Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines.

  • Yannan Ouyang‎ et al.
  • The European journal of neuroscience‎
  • 2005‎

It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F-actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F-actin blocked the translocation of GFP-CaMKII and inhibited the diffusion of 3-kDa dextran into spines (in 2-3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F-actin. Furthermore, the induction of long-term potentiation by tetanic stimulation induced local transient depolymerization of F-actin both in vivo and in hippocampal slices (8-10 weeks), and this local F-actin depolymerization was blocked by APV, a N-methyl-D-aspartate (NMDA) receptor antagonist. These results suggest that F-actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.


Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH.

  • Akiko Satoh‎ et al.
  • Cell metabolism‎
  • 2013‎

The mammalian Sir2 ortholog Sirt1 plays an important role in metabolic regulation. However, the role of Sirt1 in the regulation of aging and longevity is still controversial. Here we demonstrate that brain-specific Sirt1-overexpressing (BRASTO) transgenic mice show significant life span extension in both males and females, and aged BRASTO mice exhibit phenotypes consistent with a delay in aging. These phenotypes are mediated by enhanced neural activity specifically in the dorsomedial and lateral hypothalamic nuclei (DMH and LH, respectively), through increased orexin type 2 receptor (Ox2r) expression. We identified Nk2 homeobox 1 (Nkx2-1) as a partner of Sirt1 that upregulates Ox2r transcription and colocalizes with Sirt1 in the DMH and LH. DMH/LH-specific knockdown of Sirt1, Nkx2-1, or Ox2r and DMH-specific Sirt1 overexpression further support the role of Sirt1/Nkx2-1/Ox2r-mediated signaling for longevity-associated phenotypes. Our findings indicate the importance of DMH/LH-predominant Sirt1 activity in the regulation of aging and longevity in mammals.


Deficiency of Prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity.

  • Akiko Satoh‎ et al.
  • Aging cell‎
  • 2015‎

The dorsomedial hypothalamus (DMH) controls a number of essential physiological responses. We have demonstrated that the DMH plays an important role in the regulation of mammalian aging and longevity. To further dissect the molecular basis of the DMH function, we conducted microarray-based gene expression profiling with total RNA from laser-microdissected hypothalamic nuclei and tried to find the genes highly and selectively expressed in the DMH. We found neuropeptide VF precursor (Npvf), PR domain containing 13 (Prdm13), and SK1 family transcriptional corepressor (Skor1) as DMH-enriched genes. Particularly, Prdm13, a member of the Prdm family of transcription regulators, was specifically expressed in the compact region of the DMH (DMC), where Nk2 homeobox 1 (Nkx2-1) is predominantly expressed. The expression of Prdm13 in the hypothalamus increased under diet restriction, whereas it decreased during aging. Prdm13 expression also showed diurnal oscillation and was significantly upregulated in the DMH of long-lived BRASTO mice. The transcriptional activity of the Prdm13 promoter was upregulated by Nkx2-1, and knockdown of Nkx2-1 suppressed Prdm13 expression in primary hypothalamic neurons. Interestingly, DMH-specific Prdm13-knockdown mice showed significantly reduced wake time during the dark period and decreased sleep quality, which was defined by the quantity of electroencephalogram delta activity during NREM sleep. DMH-specific Prdm13-knockdown mice also exhibited progressive increases in body weight and adiposity. Our findings indicate that Prdm13/Nkx2-1-mediated signaling in the DMC declines with advanced age, leading to decreased sleep quality and increased adiposity, which mimic age-associated pathophysiology, and provides a potential link to DMH-mediated aging and longevity control in mammals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: