Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

  • Laura L Hernandez‎ et al.
  • PloS one‎
  • 2012‎

Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.


The type 7 serotonin receptor, 5-HT 7 , is essential in the mammary gland for regulation of mammary epithelial structure and function.

  • Vaibhav P Pai‎ et al.
  • BioMed research international‎
  • 2015‎

Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer.


RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation.

  • Danielle G Lemay‎ et al.
  • PloS one‎
  • 2013‎

Aware of the important benefits of human milk, most U.S. women initiate breastfeeding but difficulties with milk supply lead some to quit earlier than intended. Yet, the contribution of maternal physiology to lactation difficulties remains poorly understood. Human milk fat globules, by enveloping cell contents during their secretion into milk, are a rich source of mammary cell RNA. Here, we pair this non-invasive mRNA source with RNA-sequencing to probe the milk fat layer transcriptome during three stages of lactation: colostral, transitional, and mature milk production. The resulting transcriptomes paint an exquisite portrait of human lactation. The resulting transcriptional profiles cluster not by postpartum day, but by milk Na:K ratio, indicating that women sampled during similar postpartum time frames could be at markedly different stages of gene expression. Each stage of lactation is characterized by a dynamic range (10(5)-fold) in transcript abundances not previously observed with microarray technology. We discovered that transcripts for isoferritins and cathepsins are strikingly abundant during colostrum production, highlighting the potential importance of these proteins for neonatal health. Two transcripts, encoding β-casein (CSN2) and α-lactalbumin (LALBA), make up 45% of the total pool of mRNA in mature lactation. Genes significantly expressed across all stages of lactation are associated with making, modifying, transporting, and packaging milk proteins. Stage-specific transcripts are associated with immune defense during the colostral stage, up-regulation of the machinery needed for milk protein synthesis during the transitional stage, and the production of lipids during mature lactation. We observed strong modulation of key genes involved in lactose synthesis and insulin signaling. In particular, protein tyrosine phosphatase, receptor type, F (PTPRF) may serve as a biomarker linking insulin resistance with insufficient milk supply. This study provides the methodology and reference data set to enable future targeted research on the physiological contributors of sub-optimal lactation in humans.


The bovine mammary gland expresses multiple functional isoforms of serotonin receptors.

  • Laura L Hernandez‎ et al.
  • The Journal of endocrinology‎
  • 2009‎

Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors. The mRNAs for five receptor isoforms (HTR1B, 2A, 2B, 4, and 7) were identified by conventional real-time (RT)-PCR, RT quantitative PCR, and in situ hybridization in BMT. In addition to luminal mammary epithelial cell expression, HTR4 was expressed in myoepithelium, and HTR1B, 2A, and 2B were expressed in small mammary blood vessels. Serotonin suppressed milk protein mRNA expression (alpha-lactalbumin and beta-casein mRNA) in lactogen-treated primary bovine mammary epithelial cell (BMEC) cultures. To probe the functional activities of individual receptors, caspase-3 activity and expression of alpha-lactalbumin and beta-casein were measured. Both SB22489 (1B antagonist) and ritanserin (2A antagonist) increased caspase-3 activity. Expression of alpha-lactalbumin and beta-casein mRNA levels in BMEC were stimulated by low concentrations of SB224289, ritanserin, or pimozide. These results demonstrate that there are multiple 5-HT receptor isoforms in the bovine mammary gland, and point to profound differences between serotonergic systems of the bovine mammary gland and the human and mouse mammary glands. Whereas human and mouse mammary epithelial cells express predominately the protein for the 5-HT(7) receptor, cow mammary epithelium expresses multiple receptors that have overlapping, but not identical, functional activities.


Completely humanizing prolactin rescues infertility in prolactin knockout mice and leads to human prolactin expression in extrapituitary mouse tissues.

  • Heather R Christensen‎ et al.
  • Endocrinology‎
  • 2013‎

A variety of fundamental differences have evolved in the physiology of the human and rodent prolactin (PRL) systems. The PRL gene in humans and other primates contains an alternative promoter, 5.8 kbp upstream of the pituitary transcription start site, which drives expression of PRL in "extrapituitary" tissues, where PRL is believed to exert local, or paracrine, actions. Several of these extrapituitary PRL tissues serve a reproductive function (eg, mammary gland, decidua, prostate, etc), consistent with the hypothesis that local PRL production may be involved in, and required for, normal reproductive physiology in primates. Rodent research models have generated significant findings regarding the role of PRL in reproduction. Specifically, disruption (knockout) of either the PRL gene or its receptor causes profound female reproductive defects at several levels (ovaries, preimplantation endometrium, mammary glands). However, the rodent PRL gene differs significantly from the human, most notably lacking the alternative promoter. Understanding of the physiological regulation and function of extrapituitary PRL has been limited by the absence of a readily accessible experimental model, because the rodent PRL gene does not contain the alternative promoter. To overcome these limitations, we have generated mice that have been "humanized" with regard to the structural gene and tissue expression of PRL. Here, we present the characterization of these animals, demonstrating that the human PRL transgene is responsive to known physiological regulators both in vitro and in vivo. More importantly, the expression of the human PRL transgene is able to rescue the reproductive defects observed in mouse PRL knockout (mPRL(-)) females, validating their usefulness in studying the function or regulation of this hormone in a manner that is relevant to human physiology.


Serotonin: a local regulator in the mammary gland epithelium.

  • Nelson D Horseman‎ et al.
  • Annual review of animal biosciences‎
  • 2014‎

Serotonin (5-hydroxytryptamine, 5-HT) is a very simple molecule that plays key roles in complex communication mechanisms within the animal body. In the mammary glands, serotonin biosynthesis and secretion are induced in response to dilation of the alveolar spaces. Since its discovery several years ago, mammary 5-HT has been demonstrated to perform two homeostatic functions. First, serotonin regulates lactation and initiates the transition into the earliest phases of involution. Second, serotonin is a local signal that induces parathyroid hormone-related peptide (PTHrP), which allows the mammary gland to drive the mobilization of calcium from the skeleton. These processes use different receptor types, 5-HT7 and 5-HT2, respectively. In this review, we provide synthetic perspectives on the fundamental processes of lactation homeostasis and the adaptation of calcium homeostasis for lactation. We analyze the role of the intrinsic serotonin system in the physiological regulation of the mammary glands. We also consider the importance of the mammary serotonin system in pathologies and therapies associated with lactation and breast cancer.


Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

  • Vaibhav P Pai‎ et al.
  • Breast cancer research : BCR‎
  • 2009‎

The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers.


Multiple cellular responses to serotonin contribute to epithelial homeostasis.

  • Vaibhav P Pai‎ et al.
  • PloS one‎
  • 2011‎

Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers).


Enhanced responsiveness to selective serotonin reuptake inhibitors during lactation.

  • Nicholas J Jury‎ et al.
  • PloS one‎
  • 2015‎

The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD.


Serotonin regulates mammary gland development via an autocrine-paracrine loop.

  • Manabu Matsuda‎ et al.
  • Developmental cell‎
  • 2004‎

Mammary gland development is controlled by a dynamic interplay between endocrine hormones and locally produced factors. Biogenic monoamines (serotonin, dopamine, norepinephrine, and others) are an important class of bioregulatory molecules that have not been shown to participate in mammary development. Here we show that mammary glands stimulated by prolactin (PRL) express genes essential for serotonin biosynthesis (tryptophan hydroxylase [TPH] and aromatic amine decarboxylase). TPH mRNA was elevated during pregnancy and lactation, and serotonin was detected in the mammary epithelium and in milk. TPH was induced by PRL in mammosphere cultures and by milk stasis in nursing dams, suggesting that the gene is controlled by milk filling in the alveoli. Serotonin suppressed beta-casein gene expression and caused shrinkage of mammary alveoli. Conversely, TPH1 gene disruption or antiserotonergic drugs resulted in enhanced secretory features and alveolar dilation. Thus, autocrine-paracrine serotonin signaling is an important regulator of mammary homeostasis and early involution.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: