Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 239 papers

A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival.

  • Jyotsna Batra‎ et al.
  • BMC cancer‎
  • 2011‎

KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival.


Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle.

  • Tian Wang‎ et al.
  • Nature communications‎
  • 2015‎

Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized ß-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration.


Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge.

  • Ying Dong‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.


Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway.

  • Ying Dong‎ et al.
  • PloS one‎
  • 2015‎

Activation of Liver X receptors (LXRs), key transcriptional regulators of glucose metabolism, normalizes glycemia and improves insulin sensitivity in rodent models with insulin resistance. However, the molecular mechanism is unclear. This study is aimed to elucidate the mechanism of LXRs-mediated liver glucose metabolic regulation in vitro and in vivo. Db/db mice were used as an in vivo model of diabetes; palmitate (PA)-stimulated HepG2 cells were used as an in vitro cell model with impairment of insulin signaling. TO901317 (TO) was chosen as the LXRs agonist. We demonstrated that TO treatment for 14 days potently improved the hepatic glucose metabolism in db/db mice, including fasting blood glucose, fasting insulin level, and HOMA-IR. TO had no effect on the glucose metabolism in normal WT mice. TO-mediated activation of hepatic LXRs led to strong inhibition of ROS production accompanied by inactivation of JNK pathway and re-activation of Akt pathway. TO also suppressed the expression of gluconeogenic genes such as PEPCK and G-6-pase in db/db mice, but not in WT mice. In HepG2 cells, TO almost completely restored PA-induced Akt inactivation, and suppressed PA-stimulated ROS production and JNK activation. Interestingly, basal level of ROS was also inhibited by TO in HepG2 cells. TO significantly inhibited PA-stimulated expressions of gluconeogenic genes. Finally, we found that anti-oxidative genes, such as Nrf2, were up-regulated after LXRs activation by TO. These results strongly support the notion that activation of LXRs is critical in suppression of liver gluconeogenesis and improvement of insulin sensitivity in diabetic individuals. At molecular levels, the mode of action appears to be as fellows: under diabetic condition, ROS production is increased, JNK is activated, and Akt activity is inhibited; TO-mediated LXR activation potently inhibits ROS production, increases anti-oxidative gene expressions, suppresses JNK activation, and restores Akt activity. Our data provide new evidence to support LXRs as promising therapeutic targets for anti-diabetic drug development.


Small compound 6-O-angeloylplenolin induces caspase-dependent apoptosis in human multiple myeloma cells.

  • Ying Liu‎ et al.
  • Oncology letters‎
  • 2013‎

6-O-angeloylplenolin (6-OAP) is a sesquiterpene lactone agent that has been previously demonstrated to inhibit the growth of multiple myeloma (MM) cells through mitotic arrest with accumulated cyclin B1. In the present study, the levels of apoptosis were analyzed in dexamethasone-sensitive (MM.1S), dexamethasone-resistant (U266) and chemotherapy-sensitive (RPMI 8226) myeloma cell lines. Enhanced apoptosis was identified following a 48-h incubation with 6-OAP (0-10 μM) that induced a dose-dependent decrease in pro-casp-3 and the cleavage of its substrate, anti-poly (ADP-ribose) polymerase (PARP). In addition, time-dependent cleavage of PARP was also detected in U266 and MM.1S cells. The mechanism of 6-OAP cytotoxicity in all cell lines was associated with the induction of apoptosis with the presence of cleaved caspase-3 and PARP. In conclusion, 6-OAP-induced apoptosis is caspase-dependent. These observations are likely to provide a framework for future studies of 6-OAP therapy in MM.


Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles.

  • Jingfang Wu‎ et al.
  • Scientific reports‎
  • 2016‎

This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle.


Effect of non-anticoagulant N-desulfated heparin on basic fibroblast growth factor expression, angiogenesis, and metastasis of gastric carcinoma in vitro and in vivo.

  • Jin-Lian Chen‎ et al.
  • Gastroenterology research and practice‎
  • 2012‎

Objective. The present study was performed to investigate the effect of N-desulfated heparin on basic fibroblast growth factor (bFGF) expression, tumor angiogenesis and metastasis of gastric carcinoma. Methods. Human gastric cancer SGC-7901 tissues were orthotopically implanted into the stomach of NOD SCID mice. Twenty mice were randomly divided into two groups which received either intravenous injection of 0.9% NaCl solution (normal saline group) or 10 mg/kg N-desulfated heparin (N-desulfated heparin group) twice weekly for three weeks. In vitro, human gastric carcinoma SGC-7901 cells were treated with N-desulfated heparin in different concentration (0.1 mg/mL, 1 mg/mL, N-desulfated heparin group), and treated with medium (control group). Results. In vivo, the tumor metastasis rates were 9/10 in normal saline group and 2/10 in N-desulfated heparin group (P < 0.05). The intratumoral microvessel density was higher in normal saline group than in N-desulfated heparin group (P < 0.05). bFGF expression in gastric tissue was inhibited by N-desulfated heparin (P < 0.05). There was no bleeding in N-desulfated heparin group. In vitro, N-desulfated heparin inhibited significantly bFGF protein and mRNA expression of gastric carcinoma cells (P < 0.05). Conclusions. N-desulfated heparin can inhibit the metastasis of gastric cancer through inhibiting tumor bFGF expression and tumor angiogenesis with no obvious anticoagulant activity.


Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia.

  • Huiying Ding‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2011‎

Photodynamic therapy (PDT) is an emerging clinical modality for the treatment of a variety of diseases. Most photosensitizers are hydrophobic and poorly soluble in water. Many new nanoplatforms have been successfully established to improve the delivery efficiency of PS drugs. However, few reported studies have investigated how the carrier microenvironment may affect the photophysical properties of photosensitizer (PS) drugs and subsequently, their biological efficacy in killing malignant cells. In this study, we describe the modulation of type I and II photoactivation processes of the photosensitizer, 5,10,15,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), by the micelle core environment. Electron-rich poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) micelles increased photoactivations from type II to type I mechanisms, which significantly increased the generation of O(2)(-) through the electron transfer pathway over (1)O(2) production through energy transfer process. The PDPA micelles led to enhanced phototoxicity over the electron-deficient poly(D,L-lactide) control in multiple cancer cell lines under argon-saturated conditions. These data suggest that micelle carriers may not only improve the bioavailability of photosensitizer drugs, but also modulate photophysical properties for improved PDT efficacy.


Novel compounds protect auditory hair cells against gentamycin-induced apoptosis by maintaining the expression level of H3K4me2.

  • Ao Li‎ et al.
  • Drug delivery‎
  • 2018‎

Aminoglycoside-induced hair cell (HC) loss is a major cause of hearing impairment, and the effective prevention of HC loss remains an unmet medical need. Epigenetic mechanisms have been reported to be involved in protecting cochlear cells against ototoxic drug injury, and in this study we developed new bioactive compounds that have similar chemical structures as the epigenetics-related lysine-specific demethylase 1 (LSD1) inhibitors. LSD1 inhibitors have been reported to protect cochlear cells by preventing demethylation of dimethylated histone H3K4 (H3K4me2). To determine whether these new compounds exert similar protective effects on HCs, we treated mouse cochlear explant cultures with the new compounds together with gentamycin. There was a severe loss of HCs in the organ of Corti after gentamycin exposure, while co-treatment with the new compounds significantly protected against gentamycin-induced HC loss. H3K4me2 levels in the nuclei of HCs decreased after exposure to gentamycin, but H3K4me2 levels were maintained in the presence of the new compounds. Apoptosis is also involved in the injury process, and the new compounds protected the inner ear HCs against apoptosis by reducing caspase-3 activation. Together, our findings demonstrate that our new compounds prevent gentamycin-induced HC loss by preventing the demethylation of H3K4me2 and by inhibiting apoptosis, and these results might provide the theoretical basis for novel drug development for hearing protection.


Overexpression of CIP2A is associated with poor prognosis in multiple myeloma.

  • Xuewen Liu‎ et al.
  • Signal transduction and targeted therapy‎
  • 2017‎

Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous protein phosphatase 2A (PP2A) inhibitor, has been identified as an oncoprotein in promoting cancer initiation and progression of several types of cancer. However, the expression and the role played by CIP2A in the pathogenesis of multiple myeloma (MM) remain unclear. In this study, we showed that CIP2A was overexpressed in human MM cell lines and MM patients' bone marrow tissues. Clinicopathologic analysis showed that CIP2A expression was significantly correlated with clinical stage and percent of plasma cells in bone marrow. Kaplan-Meier analysis revealed that patients with high CIP2A expression presented with poorer overall survival rates than those with low CIP2A expression. Moreover, CIP2A knockdown in MM cells resulted in attenuated proliferative abilities. In addition, CIP2A depletion sensitizes dexamethasone (Dex)-resistant cells to Dex. The effect of CIP2A on proliferation and Dex therapy was mediated by the inhibition of PP2A, which in turn activated Akt. In vivo studies confirmed that CIP2A regulated MM tumorigenesis and the phosphorylation of Akt. Taken together, our results suggest that CIP2A oncoprotein plays an important role in MM progression and could serve as a prognosis marker and a novel therapeutic target for the treatment of patients with MM.


Prognosis and nomogram for predicting postoperative survival of duodenal adenocarcinoma: A retrospective study in China and the SEER database.

  • Sujing Jiang‎ et al.
  • Scientific reports‎
  • 2018‎

As primary duodenal adenocarcinoma is rare, the prognostic factors of this disease remain insufficiently explored, especially in China. We identified postoperative duodenal adenocarcinoma patients at a Chinese double-center (from 2006 to 2016) or who were registered with the Surveillance, Epidemiology, and End Results (SEER) database (from 2004 to 2014). Clinicopathological features and significant prognostic factors for cancer-specific survival (CSS) were reviewed and analyzed by using univariate and multivariate Cox proportional hazards regression. Then, a nomogram predicting CSS was constructed based on the SEER database and validated externally by using the separate Chinese cohort. Totally, 137 patients from the Chinese double-center and 698 patients from the SEER database were included for analysis. The multivariate analyses showed that age, tumor grade and TNM stage were independent prognostic factors. The nomogram constructed using these factors showed a clear prognostic superiority to the AJCC-TNM classification, 7th ed. (C-index: SEER cohort, 0.693 vs 0.625, P < 0.001; Chinese cohort, 0.677 vs 0.659, P < 0.001, respectively). In summary, the valuable prognostic factors in patients with duodenal adenocarcinoma were age, tumor grade and TNM stage. This study developed a nomogram that can precisely predict the CSS for postoperative duodenal adenocarcinoma patients.


Oriented Neural Spheroid Formation and Differentiation of Neural Stem Cells Guided by Anisotropic Inverse Opals.

  • Lin Xia‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Isotropic inverse opal structures have been extensively studied for the ability to manipulate cell behaviors such as attachment, migration, and spheroid formation. However, their use in regulate the behaviors of neural stem cells has not been fully explored, besides, the isotropic inverse opal structures usually lack the ability to induce the oriented cell growth which is fundamental in neural regeneration based on neural stem cell therapy. In this paper, the anisotropic inverse opal substrates were obtained by mechanically stretching the poly (vinylidene fluoride) (PVDF) inverse opal films. The anisotropic inverse opal substrates possessed good biocompatibility, optical properties and anisotropy, provided well guidance for the formation of neural spheroids, the alignment of neural stem cells, the differentiation of neural stem cells, the oriented growth of derived neurons and the dendritic complexity of the newborn neurons. Thus, we conclude that the anisotropic inverse opal substrates possess great potential in neural regeneration applications.


Simultaneous quantitation of four androgens and 17-hydroxyprogesterone in polycystic ovarian syndrome patients by LC-MS/MS.

  • Zheng Cao‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2020‎

Due to the low concentration of androgens in women and the limitation of immunoassays, it remains a challenge to accurately determine the levels of serum androgens in polycystic ovary syndrome (PCOS) patients for clinical laboratories. In this report, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantitation of testosterone (T), androstenedione (A4), dehydroepiandrosterone sulfate (DHEAS), dihydrotestosterone (DHT), and 17-hydroxyprogesterone (17-OHP) that are associated with PCOS.


Analysis of hyperbilirubinemia in patients with Kawasaki disease.

  • Fang Cheng‎ et al.
  • Medicine‎
  • 2020‎

The present study attempted to analyze the clinical characteristics and pathogenesis of Kawasaki disease (KD) in children with hyperbilirubinemia.A total of 390 children with KD hospitalized in our hospital from September 2018 to July 2019 were selected and divided into control (270 cases) and hyperbilirubinemia (120 cases) groups based on the total, direct, and indirect bilirubin values after admission. Clinical data of the inflammatory index and fever process of the 2 groups were analyzed and compared.The difference in sex and age between the 2 groups was statistically nonsignificant (P > .05). In the hyperbilirubinemia group, the white blood cell count, C-reactive protein, hemoglobin, platelet count, erythrocyte sedimentation rate, alanine aminotransferase, aspartate aminotransferase, albumin, and routine urine leucocyte; and incidence of coronary artery expansion, heart injury, and unreactive gamma globulin treatment were higher than those in the control group and the differences were statistically significant (P < .05). In the hyperbilirubinemia group, the mean fever duration before admission was shorter than that in the control group, whereas the fever duration after gamma globulin treatment was longer than that in the control group; these differences were statistically significant (P < .05).Hyperbilirubinemia incidence in children with KD was approximately 30.77% (120 cases), of which increased direct bilirubin was observed in 70.83% (85 cases) and increased indirect bilirubin in 29.17% (35 cases). Children with KD combined with hyperbilirubinemia exhibited a strong inflammatory reaction, which may be due to liver damage or biliary block.


Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

  • Thomas Kryza‎ et al.
  • Molecular oncology‎
  • 2017‎

The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment.


An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells.

  • Yifang Xie‎ et al.
  • Scientific reports‎
  • 2017‎

Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.


Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea.

  • Cheng Cheng‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein-protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.


KLK4 Induces Anti-Tumor Effects in Human Xenograft Mouse Models of Orthotopic and Metastatic Prostate Cancer.

  • Brian W-C Tse‎ et al.
  • Cancers‎
  • 2020‎

Recent reports have suggested the role of kallikrein-related peptidase 4 (KLK4) to be that of remodeling the tumor microenvironment in many cancers, including prostate cancer. Notably, these studies have suggested a pro-tumorigenic role for KLK4, especially in prostate cancer. However, these have been primarily in vitro studies, with limited in vivo studies performed to date. Herein, we employed an orthotopic inoculation xenograft model to mimic the growth of primary tumors, and an intracardiac injection to induce metastatic dissemination to determine the in vivo tumorigenic effects of KLK4 overexpressed in PC3 prostate cancer cells. Notably, we found that these KLK4-expressing cells gave rise to smaller localized tumors and decreased metastases than the parent PC-3 cells. To our knowledge, this is the first report of an anti-tumorigenic effect of KLK4, particularly in prostate cancer. These findings also provide a cautionary tale of the need for in vivo analyses to substantiate in vitro experimental data.


Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques.

  • Margaux Vigata‎ et al.
  • Pharmaceutics‎
  • 2020‎

Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems. The experimental conditions of drug release in saline solutions and their impact are discussed, along with the main mathematical and statistical approaches to characterize drug release profiles. We also review methods to determine drug diffusion coefficients and in vitro and in vivo models used to assess drug release and efficacy with the goal to provide guidelines and harmonized practices when investigating novel hydrogel drug delivery systems.


Glycated albumin in pregnancy: reference intervals establishment and its predictive value in adverse pregnancy outcomes.

  • Ying Dong‎ et al.
  • BMC pregnancy and childbirth‎
  • 2020‎

Many efforts have been focused on the alternative glycemic marker glycated albumin (GlyA) and its application in pregnancy during which profound physiological changes take place. Our objective was to determine the reference intervals (RIs) of GlyA in healthy Chinese pregnant women and to assess the predictive value of serum GlyA in adverse pregnancy outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: