Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls.

  • Yi-Yu Chou‎ et al.
  • NeuroImage‎
  • 2009‎

We aimed to improve on the single-atlas ventricular segmentation method of (Carmichael, O.T., Thompson, P.M., Dutton, R.A., Lu, A., Lee, S.E., Lee, J.Y., Kuller, L.H., Lopez, O.L., Aizenstein, H.J., Meltzer, C.C., Liu, Y., Toga, A.W., Becker, J.T., 2006. Mapping ventricular changes related to dementia and mild cognitive impairment in a large community-based cohort. IEEE ISBI. 315-318) by using multi-atlas segmentation, which has been shown to lead to more accurate segmentations (Chou, Y., Leporé, N., de Zubicaray, G., Carmichael, O., Becker, J., Toga, A., Thompson, P., 2008. Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer's disease, NeuroImage 40(2): 615-630); with this method, we calculated minimal numbers of subjects needed to detect correlations between clinical scores and ventricular maps. We also assessed correlations between emerging CSF biomarkers of Alzheimer's disease pathology and localizable deficits in the brain, in 80 AD, 80 mild cognitive impairment (MCI), and 80 healthy controls from the Alzheimer's Disease Neuroimaging Initiative. Six expertly segmented images and their embedded parametric mesh surfaces were fluidly registered to each brain; segmentations were averaged within subjects to reduce errors. Surface-based statistical maps revealed powerful correlations between surface morphology and 4 variables: (1) diagnosis, (2) depression severity, (3) cognitive function at baseline, and (4) future cognitive decline over the following year. Cognitive function was assessed using the mini-mental state exam (MMSE), global and sum-of-boxes clinical dementia rating (CDR) scores, at baseline and 1-year follow-up. Lower CSF Abeta(1-42) protein levels, a biomarker of AD pathology assessed in 138 of the 240 subjects, were correlated with lateral ventricular expansion. Using false discovery rate (FDR) methods, 40 and 120 subjects, respectively, were needed to discriminate AD and MCI from normal groups. 120 subjects were required to detect correlations between ventricular enlargement and MMSE, global CDR, sum-of-boxes CDR and clinical depression scores. Ventricular expansion maps correlate with pathological and cognitive measures in AD, and may be useful in future imaging-based clinical trials.


Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury.

  • Evan S Lutkenhoff‎ et al.
  • NeuroImage. Clinical‎
  • 2013‎

The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death and disability. The secondary processes, in particular, are of great clinical interest because of their potential susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-based morphometry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive, even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Furthermore, employing a data-driven decision tree model, we found that physiological measures, namely the extent of atrophy in the anterior thalamic nucleus, were the most predictive variables of whether patients had regained consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the secondary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a potential window of intervention, and a specific target region, in agreement with the view that specific cortico-thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the restoration of cognitive function after severe brain injury.


Brain growth rate abnormalities visualized in adolescents with autism.

  • Xue Hua‎ et al.
  • Human brain mapping‎
  • 2013‎

Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects.


A T1 and DTI fused 3D corpus callosum analysis in MCI subjects with high and low cardiovascular risk profile.

  • Yi Lao‎ et al.
  • NeuroImage. Clinical‎
  • 2017‎

Understanding the extent to which vascular disease and its risk factors are associated with prodromal dementia, notably Alzheimer's disease (AD), may enhance predictive accuracy as well as guide early interventions. One promising avenue to determine this relationship consists of looking for reliable and sensitive in-vivo imaging methods capable of characterizing the subtle brain alterations before the clinical manifestations. However, little is known from the imaging perspective about how risk factors such as vascular disease influence AD progression. Here, for the first time, we apply an innovative T1 and DTI fusion analysis of 3D corpus callosum (CC) on mild cognitive impairment (MCI) populations with different levels of vascular profile, aiming to de-couple the vascular factor in the prodromal AD stage. Our new fusion method successfully increases the detection power for differentiating MCI subjects with high from low vascular risk profiles, as well as from healthy controls. MCI subjects with high and low vascular risk profiles showed differed alteration patterns in the anterior CC, which may help to elucidate the inter-wired relationship between MCI and vascular risk factors.


Mapping the basal ganglia alterations in children chronically exposed to manganese.

  • Yi Lao‎ et al.
  • Scientific reports‎
  • 2017‎

Chronic manganese (Mn) exposure is associated with neuromotor and neurocognitive deficits, but the exact mechanism of Mn neurotoxicity is still unclear. With the advent of magnetic resonance imaging (MRI), in-vivo analysis of brain structures has become possible. Among different sub-cortical structures, the basal ganglia (BG) has been investigated as a putative anatomical biomarker in MR-based studies of Mn toxicity. However, previous investigations have yielded inconsistent results in terms of regional MR signal intensity changes. These discrepancies may be due to the subtlety of brain alterations caused by Mn toxicity, coupled to analysis techniques that lack the requisite detection power. Here, based on brain MRI, we apply a 3D surface-based morphometry method on 3 bilateral basal ganglia structures in school-age children chronically exposed to Mn through drinking water to investigate the effect of Mn exposure on brain anatomy. Our method successfully pinpointed significant enlargement of many areas of the basal ganglia structures, preferentially affecting the putamen. Moreover, these areas showed significant correlations with fine motor performance, indicating a possible link between altered basal ganglia neurodevelopment and declined motor performance in high Mn exposed children.


Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Positive Modulator of HGF/MET, Fosgonimeton, in Healthy Volunteers and Subjects with Alzheimer's Disease: Randomized, Placebo-Controlled, Double-Blind, Phase I Clinical Trial.

  • Xue Hua‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2022‎

Fosgonimeton (ATH-1017) is being developed as a first-in-class regenerative therapy for people with Alzheimer's disease (AD) and dementia; potentially improving dementia symptoms and altering disease progression by reversing synaptic disconnection and neuronal loss.


Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.

  • Bryce Wilkins‎ et al.
  • NeuroImage‎
  • 2015‎

Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain.


A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

  • Jie Shi‎ et al.
  • PloS one‎
  • 2013‎

Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates.


Mapping creatinine- and cystatin C-related white matter brain deficits in the elderly.

  • Priya Rajagopalan‎ et al.
  • Neurobiology of aging‎
  • 2013‎

Poor kidney function is associated with increased risk of cognitive decline and generalized brain atrophy. Chronic kidney disease impairs glomerular filtration rate, and this deterioration is indicated by elevated blood levels of kidney biomarkers such as creatinine and cystatin C. Here we hypothesized that impaired renal function would be associated with brain deficits in regions vulnerable to neurodegeneration. Using tensor-based morphometry, we related patterns of brain volumetric differences to creatinine, cystatin C levels, and glomerular filtration rate in a large cohort of 738 (mean age, 75.5 ± 6.8 years; 438 men, 300 women) elderly Caucasian subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative. Elevated kidney biomarkers were associated with volume deficits in the white matter region of the brain. All 3 renal parameters in our study showed significant associations consistently with a region that corresponds with the anterior limb of internal capsule, bilaterally. This is the first study to report a marked profile of structural alterations in the brain associated with elevated kidney biomarkers, helping us to explain the cognitive deficits.


Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls.

  • Jonathan H Morra‎ et al.
  • Human brain mapping‎
  • 2009‎

We used a new method we developed for automated hippocampal segmentation, called the auto context model, to analyze brain MRI scans of 400 subjects from the Alzheimer's disease neuroimaging initiative. After training the classifier on 21 hand-labeled expert segmentations, we created binary maps of the hippocampus for three age- and sex-matched groups: 100 subjects with Alzheimer's disease (AD), 200 with mild cognitive impairment (MCI) and 100 elderly controls (mean age: 75.84; SD: 6.64). Hippocampal traces were converted to parametric surface meshes and a radial atrophy mapping technique was used to compute average surface models and local statistics of atrophy. Surface-based statistical maps visualized links between regional atrophy and diagnosis (MCI versus controls: P = 0.008; MCI versus AD: P = 0.001), mini-mental state exam (MMSE) scores, and global and sum-of-boxes clinical dementia rating scores (CDR; all P < 0.0001, corrected). Right but not left hippocampal atrophy was associated with geriatric depression scores (P = 0.004, corrected); hippocampal atrophy was not associated with subsequent decline in MMSE and CDR scores, educational level, ApoE genotype, systolic or diastolic blood pressure measures, or homocysteine. We gradually reduced sample sizes and used false discovery rate curves to examine the method's power to detect associations with diagnosis and cognition in smaller samples. Forty subjects were sufficient to discriminate AD from normal and correlate atrophy with CDR scores; 104, 200, and 304 subjects, respectively, were required to correlate MMSE with atrophy, to distinguish MCI from normal, and MCI from AD.


Mapping Alzheimer's disease progression in 1309 MRI scans: power estimates for different inter-scan intervals.

  • Xue Hua‎ et al.
  • NeuroImage‎
  • 2010‎

Neuroimaging centers and pharmaceutical companies are working together to evaluate treatments that might slow the progression of Alzheimer's disease (AD), a common but devastating late-life neuropathology. Recently, automated brain mapping methods, such as tensor-based morphometry (TBM) of structural MRI, have outperformed cognitive measures in their precision and power to track disease progression, greatly reducing sample size estimates for drug trials. In the largest TBM study to date, we studied how sample size estimates for tracking structural brain changes depend on the time interval between the scans (6-24 months). We analyzed 1309 brain scans from 91 probable AD patients (age at baseline: 75.4+/-7.5 years) and 189 individuals with mild cognitive impairment (MCI; 74.6+/-7.1 years), scanned at baseline, 6, 12, 18, and 24 months. Statistical maps revealed 3D patterns of brain atrophy at each follow-up scan relative to the baseline; numerical summaries were used to quantify temporal lobe atrophy within a statistically-defined region-of-interest. Power analyses revealed superior sample size estimates over traditional clinical measures. Only 80, 46, and 39 AD patients were required for a hypothetical clinical trial, at 6, 12, and 24 months respectively, to detect a 25% reduction in average change using a two-sided test (alpha=0.05, power=80%). Correspondingly, 106, 79, and 67 subjects were needed for an equivalent MCI trial aiming for earlier intervention. A 24-month trial provides most power, except when patient attrition exceeds 15-16%/year, in which case a 12-month trial is optimal. These statistics may facilitate clinical trial design using voxel-based brain mapping methods such as TBM.


Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry.

  • Xue Hua‎ et al.
  • NeuroImage‎
  • 2011‎

This paper responds to Thompson and Holland (2011), who challenged our tensor-based morphometry (TBM) method for estimating rates of brain changes in serial MRI from 431 subjects scanned every 6 months, for 2 years. Thompson and Holland noted an unexplained jump in our atrophy rate estimates: an offset between 0 and 6 months that may bias clinical trial power calculations. We identified why this jump occurs and propose a solution. By enforcing inverse-consistency in our TBM method, the offset dropped from 1.4% to 0.28%, giving plausible anatomical trajectories. Transitivity error accounted for the minimal remaining offset. Drug trial sample size estimates with the revised TBM-derived metrics are highly competitive with other methods, though higher than previously reported sample size estimates by a factor of 1.6 to 2.4. Importantly, estimates are far below those given in the critique. To demonstrate a 25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects would be required for a 2-year trial, and 91 AD and 192 MCI subjects for a 1-year trial.


Genome-wide interaction analysis reveals replicated epistatic effects on brain structure.

  • Derrek P Hibar‎ et al.
  • Neurobiology of aging‎
  • 2015‎

The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.


Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer's disease.

  • Jason L Stein‎ et al.
  • NeuroImage‎
  • 2010‎

In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimer's disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P<5 x 10(-7)). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit. This protein - involved in learning and memory, and excitotoxic cell death - has age-dependent prevalence in the synapse and is already a therapeutic target in Alzheimer's disease. Risk alleles for lower temporal lobe volume at this SNP were significantly over-represented in AD and MCI subjects vs. controls (odds ratio=1.273; P=0.039) and were associated with mini-mental state exam scores (MMSE; t=-2.114; P=0.035) demonstrating a negative effect on global cognitive function. Voxelwise maps of genetic association of this SNP with regional brain volumes, revealed intense temporal lobe effects (FDR correction at q=0.05; critical P=0.0257). This study uses large-scale brain mapping for gene discovery with implications for Alzheimer's disease.


Ventricular maps in 804 ADNI subjects: correlations with CSF biomarkers and clinical decline.

  • Yi-Yu Chou‎ et al.
  • Neurobiology of aging‎
  • 2010‎

Ideal biomarkers of Alzheimer's disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we explored the utility of automated 3D maps of the lateral ventricles as a possible biomarker of AD. We used our multi-atlas fluid image alignment (MAFIA) method, to compute ventricular models automatically, without user intervention, from 804 brain MRI scans with 184 AD, 391 mild cognitive impairment (MCI), and 229 healthy elderly controls (446 men, 338 women; age: 75.50 +/- 6.81 [SD] years). Radial expansion of the ventricles, computed pointwise, was strongly correlated with current cognition, depression ratings, Hachinski Ischemic scores, language scores, and with future clinical decline after controlling for any effects of age, gender, and educational level. In statistical maps ranked by effect sizes, ventricular differences were highly correlated with CSF measures of Abeta(1-42), and correlated with ApoE4 genotype. These statistical maps are highly automated, and offer a promising biomarker of AD for large-scale studies.


The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts.

  • Yuchun Tang‎ et al.
  • NeuroImage‎
  • 2010‎

We developed a novel brain atlas template to facilitate computational brain studies of Chinese subjects and populations using high quality magnetic resonance imaging (MRI) and well-validated image analysis techniques. To explore the ethnicity-based structural brain differences, we used the MRI scans of 35 Chinese male subjects (24.03+/-2.06 years) and compared them to an age-matched cohort of 35 Caucasian males (24.03+/-2.06 years). Global volumetric measures were used to identify significant group differences in the brain length, width, height and AC-PC line distance. Using the LONI BrainParser, 56 brain structures were automatically labeled and analyzed for all subjects. We identified significant ethnicity differences in brain structure volumes, suggesting that a population-specific brain atlas may be more appropriate for studies involving Chinese populations. To address this, we constructed a 3D Chinese brain atlas based on high resolution 3.0T MRI scans of 56 right-handed male Chinese volunteers (24.46+/-1.81 years). All Chinese brains were spatially normalized by using linear and nonlinear transformation via the "AIR Make Atlas" pipeline workflow within the LONI pipeline environment. This high-resolution Chinese brain atlas was compared to the ICBM152 template, which was constructed using Caucasian brains.


Brain structure and obesity.

  • Cyrus A Raji‎ et al.
  • Human brain mapping‎
  • 2010‎

Obesity is associated with increased risk for cardiovascular health problems including diabetes, hypertension, and stroke. These cardiovascular afflictions increase risk for cognitive decline and dementia, but it is unknown whether these factors, specifically obesity and Type II diabetes, are associated with specific patterns of brain atrophy. We used tensor-based morphometry (TBM) to examine gray matter (GM) and white matter (WM) volume differences in 94 elderly subjects who remained cognitively normal for at least 5 years after their scan. Bivariate analyses with corrections for multiple comparisons strongly linked body mass index (BMI), fasting plasma insulin (FPI) levels, and Type II Diabetes Mellitus (DM2) with atrophy in frontal, temporal, and subcortical brain regions. A multiple regression model, also correcting for multiple comparisons, revealed that BMI was still negatively correlated with brain atrophy (FDR <5%), while DM2 and FPI were no longer associated with any volume differences. In an Analysis of Covariance (ANCOVA) model controlling for age, gender, and race, obese subjects with a high BMI (BMI > 30) showed atrophy in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus compared with individuals with a normal BMI (18.5-25). Overweight subjects (BMI: 25-30) had atrophy in the basal ganglia and corona radiata of the WM. Overall brain volume did not differ between overweight and obese persons. Higher BMI was associated with lower brain volumes in overweight and obese elderly subjects. Obesity is therefore associated with detectable brain volume deficits in cognitively normal elderly subjects.


Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression.

  • Matt Silver‎ et al.
  • NeuroImage‎
  • 2012‎

We present a new method for the detection of gene pathways associated with a multivariate quantitative trait, and use it to identify causal pathways associated with an imaging endophenotype characteristic of longitudinal structural change in the brains of patients with Alzheimer's disease (AD). Our method, known as pathways sparse reduced-rank regression (PsRRR), uses group lasso penalised regression to jointly model the effects of genome-wide single nucleotide polymorphisms (SNPs), grouped into functional pathways using prior knowledge of gene-gene interactions. Pathways are ranked in order of importance using a resampling strategy that exploits finite sample variability. Our application study uses whole genome scans and MR images from 99 probable AD patients and 164 healthy elderly controls in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 66,182 SNPs are mapped to 185 gene pathways from the KEGG pathway database. Voxel-wise imaging signatures characteristic of AD are obtained by analysing 3D patterns of structural change at 6, 12 and 24 months relative to baseline. High-ranking, AD endophenotype-associated pathways in our study include those describing insulin signalling, vascular smooth muscle contraction and focal adhesion. All of these have been previously implicated in AD biology. In a secondary analysis, we investigate SNPs and genes that may be driving pathway selection. High ranking genes include a number previously linked in gene expression studies to β-amyloid plaque formation in the AD brain (PIK3R3,PIK3CG,PRKCAandPRKCB), and to AD related changes in hippocampal gene expression (ADCY2, ACTN1, ACACA, and GNAI1). Other high ranking previously validated AD endophenotype-related genes include CR1, TOMM40 and APOE.


Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

  • Rachel M Brouwer‎ et al.
  • Human brain mapping‎
  • 2017‎

Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc.


Discovery and Replication of Gene Influences on Brain Structure Using LASSO Regression.

  • Omid Kohannim‎ et al.
  • Frontiers in neuroscience‎
  • 2012‎

We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2. We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8 ± 2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: