Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

PALB2 mutations in German and Russian patients with bilateral breast cancer.

  • Natalia Bogdanova‎ et al.
  • Breast cancer research and treatment‎
  • 2011‎

Since germline mutations in the PALB2 (Partner and Localizer of BRCA2) gene have been identified as breast cancer (BC) susceptibility alleles, the geographical spread and risks associated with PALB2 mutations are subject of intense investigation. Patients with bilateral breast cancer constitute a valuable group for genetic studies. We have thus scanned the whole coding region of PALB2 in a total of 203 German or Russian bilateral breast cancer patients using an approach based on high-resolution melting analysis and direct sequencing of genomic DNA samples. Truncating PALB2 mutations were identified in 4/203 (2%) breast cancer patients with bilateral disease. The two nonsense mutations, p.E545X and p.Q921X, have not been previously described whereas the two other mutations, p.R414X and c.509_510delGA, are recurrent. Our results indicate that PALB2 germline mutations account for a small, but not negligible, proportion of bilateral breast carcinomas in German and Russian populations.


Functional deficiency of NBN, the Nijmegen breakage syndrome protein, in a p.R215W mutant breast cancer cell line.

  • Bianca Schröder-Heurich‎ et al.
  • BMC cancer‎
  • 2014‎

Mutations in NBN, the gene for Nijmegen Breakage Syndrome (NBS), are thought to predispose women to developing breast cancer, but a breast cancer cell line containing mutations in NBN has not yet been described. The p.R215W missense mutation occurs at sub-polymorphic frequencies in several populations. We aimed to investigate its functional impact in breast cancer cells from a carrier of this NBN mutation.


Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

  • Stian Knappskog‎ et al.
  • Oncotarget‎
  • 2014‎

The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.


Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

  • Heather S L Jim‎ et al.
  • Journal of genetics and genome research‎
  • 2015‎

Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.


Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2015‎

Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.


Rare ATAD5 missense variants in breast and ovarian cancer patients.

  • Ivana Maleva Kostovska‎ et al.
  • Cancer letters‎
  • 2016‎

ATAD5/ELG1 is a protein crucially involved in replication and maintenance of genome stability. ATAD5 has recently been identified as a genomic risk locus for both breast and ovarian cancer through genome-wide association studies. We aimed to investigate the spectrum of coding ATAD5 germ-line mutations in hospital-based series of patients with triple-negative breast cancer or serous ovarian cancer compared with healthy controls. The ATAD5 coding and adjacent splice site regions were analyzed by targeted next-generation sequencing of DNA samples from 273 cancer patients, including 114 patients with triple-negative breast cancer and 159 patients with serous epithelial ovarian cancer, and from 276 healthy females. Among 42 different variants identified, twenty-two were rare missense substitutions, of which 14 were classified as pathogenic by at least one in silico prediction tool. Three of four novel missense substitutions (p.S354I, p.H974R and p.K1466N) were predicted to be pathogenic and were all identified in ovarian cancer patients. Overall, rare missense variants with predicted pathogenicity tended to be enriched in ovarian cancer patients (14/159) versus controls (11/276) (p = 0.05, 2df). While truncating germ-line variants in ATAD5 were not detected, it remains possible that several rare missense variants contribute to genetic susceptibility toward epithelial ovarian carcinomas.


Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2016‎

A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.


Prostate cancer risk is not altered by TP53AIP1 germline mutations in a German case-control series.

  • Manuel Luedeke‎ et al.
  • PloS one‎
  • 2012‎

Prostate cancer susceptibility has previously been associated with truncating germline variants in the gene TP53AIP1 (tumor protein p53 regulated apoptosis inducing protein 1). For two apparently recurrent mutations (p.Q22fs and p.S32X) a remarkable OR of 5.1 was reported for prostate cancer risk. Since these findings have not been validated so far, we genotyped p.Q22fs and p.S32X in two German series with a total of 1,207 prostate cancer cases and 1,495 controls. The truncating variants were not significantly associated with prostate cancer in none of the two cohorts, nor in the combined analysis [odds ratio (OR) = 1.16; 95% confidence interval (CI 95%) = 0.62-2.15; p = 0.66]. Carriers showed no significant differences in family history of prostate cancer, age at diagnosis, Gleason score or PSA at diagnosis when compared to non-carrier prostate cancer cases. The large sample size of the combined cohort rejects a high-risk effect greater than 2.2 and indicates a limited role of TP53AIP1 in prostate cancer predisposition.


Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

  • Montserrat Garcia-Closas‎ et al.
  • PLoS genetics‎
  • 2008‎

A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.


Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility.

  • Madalene Earp‎ et al.
  • PloS one‎
  • 2018‎

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.


Assessment of γ-H2AX and 53BP1 Foci in Peripheral Blood Lymphocytes to Predict Subclinical Hematotoxicity and Response in Somatostatin Receptor-Targeted Radionuclide Therapy for Advanced Gastroenteropancreatic Neuroendocrine Tumors.

  • Thorsten Derlin‎ et al.
  • Cancers‎
  • 2021‎

We aimed to characterize γ-H2AX and 53BP1 foci formation in patients receiving somatostatin receptor-targeted radioligand therapy, and explored its role for predicting treatment-related hematotoxicity, and treatment response.


Hereditary breast cancer: ever more pieces to the polygenic puzzle.

  • Natalia Bogdanova‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2013‎

Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.


Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

  • Siddhartha P Kar‎ et al.
  • Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology‎
  • 2015‎

Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations.


Mutation analysis of BRCA1, BRCA2, PALB2 and BRD7 in a hospital-based series of German patients with triple-negative breast cancer.

  • Franziska Pern‎ et al.
  • PloS one‎
  • 2012‎

Triple-negative breast cancer (TNBC) is an aggressive form of breast carcinoma with a poor prognosis. Recent evidence suggests that some patients with TNBC harbour germ-line mutations in DNA repair genes which may render their tumours susceptible to novel therapies such as treatment with PARP inhibitors. In the present study, we have investigated a hospital-based series of 40 German patients with TNBC for the presence of germ-line mutations in BRCA1, BRCA2, PALB2, and BRD7 genes. Microfluidic array PCR and next-generation sequencing was used for BRCA1 and BRCA2 analysis while conventional high-resolution melting and Sanger sequencing was applied to study the coding regions of PALB2 and BRD7, respectively. Truncating mutations in BRCA1 were found in six patients, and truncating mutations in BRCA2 and PALB2 were detected in one patient each, whereas no truncating mutation was identified in BRD7. One patient was a double heterozygote for the PALB2 mutation, c.758insT, and a BRCA1 mutation, c.927delA. Our results confirm in a hospital-based setting that a substantial proportion of German TNBC patients (17.5%) harbour germ-line mutations in genes involved in homology-directed DNA repair, with a preponderance of BRCA1 mutations. Triple-negative breast cancer should be considered as an additional criterion for future genetic counselling and diagnostic sequencing.


Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer.

  • Hui Shen‎ et al.
  • Nature communications‎
  • 2013‎

HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes.


Involvement of Peripheral Opioid Receptors in the Realization of Food Motivation Into Eating Behavior.

  • Sergey Sudakov‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2020‎

The involvement of peripheral opioid receptors in the mechanisms of eating behavior is still unclear. The aim of this work was to study the role of peripheral, predominantly gastric mu and delta opioid receptors in the realization of food motivation in conditions of different energy costs for eating behavior. Experiments were performed under a between-sessions progressive ratio schedule of reinforcement in food-deprived rats. The level of food motivation was calculated using a self-developed method. Food intake, motor activity, and metabolic rate were recorded in fed and hungry animals. Results showed that intragastric administration of the mu opioid receptor agonist DAMGO led to an increase in the level of food motivation in the light variant of operant feeding behaviors. Food consumption did not change. At high costs for feeding behavior, the administration of DAMGO did not alter food motivation; however, food consumption and motor activity were reduced. Intragastric administration of the delta opioid receptor agonist DADLE did not lead to changes in the level of food motivation and physical activity, but inhibition of feeding behavior was observed in all reinforcement schedules. Three regulatory pathways of eating behavior in difficult food conditions by peripheral, predominantly gastric opioid receptors are hypothesized: environmental-inhibitory afferentations and suppression of the realization of food motivation into behavior; homeostatic-inhibitory action on food motivation; and rewarding-suppression of the anticipatory reinforcement.


Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

  • Roger L Milne‎ et al.
  • Human molecular genetics‎
  • 2014‎

Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.


Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

  • Ganna Chornokur‎ et al.
  • PloS one‎
  • 2015‎

Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.


Adenosine A2B receptors induce proliferation, invasion and activation of cAMP response element binding protein (CREB) in trophoblast cells.

  • Natallia Darashchonak‎ et al.
  • BMC pregnancy and childbirth‎
  • 2014‎

Placental hypoxia is a result of abnormal and shallow trophoblast invasion and involved in the pathophysiology of preeclampsia. Hypoxia increases extracellular adenosine levels and plays an important role in the regulation of angiogenesis, proliferation, vascular tone, endothelial permeability and inflammation. It was shown that adenosine concentrations are higher in preeclamptic patients. We tested the hypothesis that hypoxia and A2B adenosine receptor activation influence cyclic adenosine monophosphate (cAMP) production, proliferation, invasion and cAMP-PKA-CREB signaling in trophoblast cells (HTR-8/SVneo).


Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene.

  • Ed Dicks‎ et al.
  • Oncotarget‎
  • 2017‎

We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8×10-3). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P=0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P=0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P=0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: