Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Prognostic Factors and Visual Outcomes of Pyogenic Liver Abscess-Related Endogenous Klebsiella pneumoniae Endophthalmitis: A 20-year retrospective review.

  • Yi-Hua Chen‎ et al.
  • Scientific reports‎
  • 2019‎

Endogenous K. pneumoniae endophthalmitis (EKE) has a higher incidence among East Asians, and the most common infectious source of EKE is pyogenic liver abscess (PLA). We investigate the risk factors for poor visual outcomes in patients with PLA-related EKE. The retrospective medical records of 104 patients (120 eyes) diagnosed with PLA-related EKE between 1996 and 2015. In univariate logistic regression analysis, the risk factors for poor visual outcomes were initial visual acuity (VA) worse than counting fingers (CF) (p < 0.001), eye pain (p = 0.013), hypopyon (p = 0.003), ocular hypertension (p = 0.003), positive intraocular fluids cultures (p < 0.001), subretinal abscess (p = 0.025), unilateral involvement (p = 0.017), delayed ophthalmologic visit (p = 0.022), initially presented with ocular symptoms ahead of systemic symptoms (p < 0.001), and corneal edema (p < 0.001). Intravitreal dexamethasone reduced the requirement of enucleation or evisceration (p = 0.01). The multivariate logistic regression revealed that poor initial VA worse than CF (p = 0.004) and initially presented with ocular symptoms ahead of systemic symptoms (p = 0.007) were the significant independent factors for poor visual outcomes. Early diagnosis and prompt treatment may salvage useful vision in some eyes.


HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy.

  • Yang Kong‎ et al.
  • EMBO molecular medicine‎
  • 2023‎

Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO-related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO-related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α-ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO-chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO-related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.


The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development.

  • Philip E Wagstaff‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.


PINK1/PARKIN signalling in neurodegeneration and neuroinflammation.

  • Peter M J Quinn‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson's disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer's diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer's, Huntington's and Parkinson's diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.


Role of growth factors and internal limiting membrane constituents in müller cell migration.

  • An-Lun Wu‎ et al.
  • Experimental eye research‎
  • 2021‎

This study investigated the effects of growth factors and internal limiting membrane components on Müller cell migration. We studied the effects of epidermal growth factor (EGF), fibroblast growth factor (FGF), somatomedin (IGF-1), platelet derived growth factor (PDGF), and stromal cell-derived factor-1 alpha (SDF-1α) as well as collagen IV, laminin, and fibronectin on the proliferative and migratory activities of rat Müller cells in vitro. A water soluble tetrazolium-1 assay was used to quantify the viability of Müller cells in respective cultures, and analysis was performed using an enzyme-linked immunosorbent assay reader. All the factors examined had significant proliferative effects on cultured Müller cells (p < .05). A two-well Ibidi silicone culture insert was used to assess Müller cell migration. Müller cells cultured in EGF, FGF, IGF-1, collagen IV, and laminin but not in SDF, PDGF, or fibronectin effectively increased the cell migratory activity (p < .001). In addition, combined EGF and collagen IV, combined FGF and collagen IV, and combined IGF-1 and laminin exhibited more significant (p < .001) effects on Müller cell migration compared with culture a single factor. In summary, this study revealed the combinatorial effects of various growth factors and individual internal limiting membrane constituents. This may assist Müller cell migration together with the macular hole healing process.


Zebrafish (Danio rerio) Is an Economical and Efficient Animal Model for Screening Potential Anti-cataract Compounds.

  • Chun-Fu Liu‎ et al.
  • Translational vision science & technology‎
  • 2022‎

To develop a zebrafish cataract model for screening potential anti-cataract compounds.


CRB1 is required for recycling by RAB11A+ vesicles in human retinal organoids.

  • Thilo M Buck‎ et al.
  • Stem cell reports‎
  • 2023‎

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Spatiotemporal control of genome engineering in cone photoreceptors.

  • Nan-Kai Wang‎ et al.
  • Cell & bioscience‎
  • 2023‎

Cones are essential for color recognition, high resolution, and central vision; therefore cone death causes blindness. Understanding the pathophysiology of each cell type in the retina is key to developing therapies for retinal diseases. However, studying the biology of cone cells in the rod-dominant mammalian retina is particularly challenging. In this study, we used a bacterial artificial chromosome (BAC) recombineering method to knock in the "CreERT2" sequence into the Gnat2 and Arr3 genes, respectively and generated three novel inducible CreERT2 mice with different cone cell specificities.


Clinical Characteristics and Genetic Variants in Taiwanese Patients With PROM1-Related Inherited Retinal Disorders.

  • Tzu-Yi Lin‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2023‎

This study investigated the clinical characteristics of patients with PROM1-related inherited retinal diseases (IRDs).


CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa.

  • Wen-Hsuan Wu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2022‎

Mutations in rhodopsin (RHO) are the most common causes of autosomal dominant retinitis pigmentosa (adRP), accounting for 20% to 30% of all cases worldwide. However, the high degree of genetic heterogeneity makes development of effective therapies cumbersome. To provide a universal solution to RHO-related adRP, we devised a CRISPR-based, mutation-independent gene ablation and replacement (AR) compound therapy carried by a dual AAV2/8 system. Moreover, we developed a novel hRHOC110R/hRHOWT humanized mouse model to assess the AR treatment in vivo. Results show that this humanized RHO mouse model exhibits progressive rod-cone degeneration that phenocopies hRHOC110R/hRHOWT patients. In vivo transduction of AR AAV8 dual vectors remarkably ablates endogenous RHO expression and overexpresses exogenous WT hRHO. Furthermore, the administration of AR during adulthood significantly hampers photoreceptor degeneration both histologically and functionally for at least 6 months compared with sole gene replacement or surgical trauma control. This study demonstrates the effectiveness of AR treatment of adRP in the human genomic context while revealing the feasibility of its application for other autosomal dominant disorders.


Associations of VEGF Polymorphisms With Retinopathy of Prematurity.

  • Xiao Chun Ling‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2023‎

This study investigated the associations between vascular endothelial growth factor (VEGF) polymorphisms and retinopathy of prematurity (ROP) risk.


CNGB1-related rod-cone dystrophy: A mutation review and update.

  • Marco Nassisi‎ et al.
  • Human mutation‎
  • 2021‎

Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.


Mouse Models of Achromatopsia in Addressing Temporal "Point of No Return" in Gene-Therapy.

  • Nan-Kai Wang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Achromatopsia is characterized by amblyopia, photophobia, nystagmus, and color blindness. Previous animal models of achromatopsia have shown promising results using gene augmentation to restore cone function. However, the optimal therapeutic window to elicit recovery remains unknown. Here, we attempted two rounds of gene augmentation to generate recoverable mouse models of achromatopsia including a Cnga3 model with a knock-in stop cassette in intron 5 using Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR) and targeted embryonic stem (ES) cells. This model demonstrated that only 20% of CNGA3 levels in homozygotes derived from target ES cells remained, as compared to normal CNGA3 levels. Despite the low percentage of remaining protein, the knock-in mouse model continued to generate normal cone phototransduction. Our results showed that a small amount of normal CNGA3 protein is sufficient to form "functional" CNG channels and achieve physiological demand for proper cone phototransduction. Thus, it can be concluded that mutating the Cnga3 locus to disrupt the functional tetrameric CNG channels may ultimately require more potent STOP cassettes to generate a reversible achromatopsia mouse model. Our data also possess implications for future CNGA3-associated achromatopsia clinical trials, whereby restoration of only 20% functional CNGA3 protein may be sufficient to form functional CNG channels and thus rescue cone response.


Endogenous Fungal Endophthalmitis: Causative Organisms, Treatments, and Visual Outcomes.

  • Kuan-Jen Chen‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2022‎

Endogenous fungal endophthalmitis (EFE) is a vision-threatening intraocular infection and a rare complication of fungemia. Early diagnosis and prompt aggressive treatment are crucial to avoid vision loss. We retrospectively reviewed the data of 37 patients (49 eyes) with EFE who were treated at a tertiary referral hospital from January 2000 to April 2019. The most common risk factor was diabetes (24 patients; 65%), followed by recent hospitalization, urinary tract disease, liver disease, and immunosuppressive therapy. Two or more risk factors were detected in 24 patients (65%), and yeasts (29 patients; 78%) were more commonly detected than mold (8 patients; 22%). The most common fungal isolates were Candida spp. (78%), especially Candida albicans (70%). Moreover, 24 eyes in 21 patients underwent vitrectomy, and 2 eyes underwent evisceration. Retinal detachment (RD) occurred in 17 eyes (35%) in 14 patients, and eyes without RD exhibited significantly superior visual outcomes (p = 0.001). A comparison of the initial VA between the better (20/200 or better) and worse groups (worse than 20/200) revealed that better initial VA was related to a superior visual outcome (p = 0.003). Therefore, to achieve superior visual outcomes, early diagnosis and prompt treatment are necessary for patients with EFE.


Impaired cholesterol efflux in retinal pigment epithelium of individuals with juvenile macular degeneration.

  • Yi-Ting Tsai‎ et al.
  • American journal of human genetics‎
  • 2021‎

Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.


Photoreceptor Manifestations of Primary Mitochondrial Optic Nerve Disorders.

  • Yin-Hsi Chang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

To compare the manifestations of photoreceptors (PRs) in three hereditary optic neuropathies affected by primary mitochondrial dysfunction and discuss whether the retinal ganglion cells (RGCs) or the PRs are preferentially affected.


shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa.

  • Joaquin Tosi‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

In vertebrate rods, dark and light conditions produce changes in guanosine 3',5'-cyclic monophosphate (cGMP) and calcium (Ca(2+) ) levels, which are regulated by the opposing function of several proteins. During the recovery of a bright flash, guanylate cyclase (GUCY) helps raise cGMP to levels that open cGMP-gated calcium sodium channels (CNG) to increase Na(+) and Ca(2+) influx in the outer segment. In contrast, light activates cGMP phosphodiesterase 6 (PDE6) causing rapid hydrolysis of cGMP, CNG closure, and reduced Na(+) and Ca(2+) levels. In Pde6b mouse models of retinitis pigmentosa (RP), photoreceptor death is preceded by abnormally high cGMP and Ca(2+) levels, likely because of continued synthesis of cGMP by guanylate cyclases and unregulated influx of Ca(2+) to toxic levels through CNG channels. To reverse the effects of Pde6b loss of function, we employed an shRNA knockdown approach to reduce the expression of Gucy2e or Cnga1 in Pde6b(H620Q) photoreceptors prior to degeneration. Gucy2e- or Cnga1-shRNA lentiviral-mediated knockdown GUCY2E and CNGA1 expression increase visual function and photoreceptor survival in Pde6b(H620Q) mice. We demonstrated that effective knockdown of GUCY2E and CNGA1 expression to counteract loss of PDE6 function may develop into a valuable approach for treating some patients with RP.


Lens subluxation after plasmin and SF6 injections in rabbit eyes.

  • Wei-Chi Wu‎ et al.
  • PloS one‎
  • 2014‎

To investigate the rate of lens subluxation following plasmin and/or SF6 injections in eyes, and whether a subsequent elevated level of vascular endothelial growth factor (VEGF) and vitreous tap would aggravate subluxation.


Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome.

  • Nan-Kai Wang‎ et al.
  • Disease models & mechanisms‎
  • 2013‎

Goldmann-Favre syndrome, also known as enhanced S-cone syndrome, is an inherited retinal degeneration disease in which a gain of photoreceptor cell types results in retinal dysplasia and degeneration. Although microglia have been implicated in the pathogenesis of many neurodegenerative diseases, the fundamental role of these cells in this disease is unknown. In the current study, sequential analyses suggest that microglia are recruited and appear after outer nuclear layer folding. By crossing rd7 mice (a model for hereditary retinal degeneration owing to Nr2e3 mutation) with mice carrying the macrophage Fas-induced apoptosis (Mafia) transgene, we generated double-mutant mice and studied the role of the resident retinal microglia. Microglial cells in these double-mutant mice express enhanced green fluorescent protein (EGFP) and a suicide gene that can trigger Fas-mediated apoptosis via systemic treatment with AP20187 (FK506 dimerizer). We demonstrated that more than 80% of the EGFP+ cells in retinas from rd7/rd7;Tg/Tg mice express Iba-1 (a microglial marker), and resident microglia are still present in the retina because AP20187 does not cross the blood-brain barrier. Hence, only circulating bone marrow (BM)-derived microglia are depleted. Depletion of circulating BM-derived microglia accelerates retinal degeneration in rd7 mice. An increased number of autofluorescent (AF) spots is a consequence of resident microglia proliferation, which in turn establishes an inflammatory cytokine milieu via the upregulation of IL-1β, IL-6 and TNFα expression. This inflammation is likely to accelerate retinal degeneration. This study not only identifies inflammation as a crucial step in the pathogenesis of retinal degeneration, but also highlights the involvement of specific cytokine genes that could serve as future treatment targets in retinal degenerations.


Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice.

  • Wei-Hao Peng‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Purpose: The rearranged during transfection (RET) receptor tyrosine kinase plays a key role in transducing signals related to cell growth and differentiation. Ret mutant mice show abnormal retinal activity and abnormal levels and morphology of bipolar cells, yet die on the 21st day after birth as a result of renal underdevelopment. To extend the observation period, we generated the Ret conditional knockout Chx10-Cre;C-Ret lx/lx mouse model and analyzed the retinal function and morphological changes in mature and aging Chx10-Cre;C-Ret lx/lx mice. Methods: Retina-specific depletion of Ret was achieved using mice with floxed alleles of the Ret gene with CHX10-driven Cre recombinase; floxed mice without Cre expression were used as controls. Retinal function was examined using electroretinography (ERG), and 2-, 4-, 12-, and 24-month-old mice were analyzed by hematoxylin staining and immunohistochemistry to evaluate retinal morphological alterations. The ultrastructure of photoreceptor synapses was evaluated using electron microscopy. Results: The results of the ERG testing showed that b-wave amplitudes were reduced in Chx10-Cre;C-Ret lx/lx mice, whereas a-waves were not affected. A histopathological analysis revealed a thinner and disorganized outer plexiform layer at the ages of 12 and 24 months in Chx10-Cre;C-Ret lx/lx mice. Moreover, the data provided by immunohistochemistry showed defects in the synapses of photoreceptor cells. This result was confirmed at the ultrastructural level, thus supporting the participation of Ret in the morphological changes of the synaptic ribbon. Conclusion: Our results provide evidence of the role of Ret in maintaining the function of the retina, which was essential for preserving the structure of the synaptic ribbon and supporting the integrity of the outer plexiform layer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: