Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Analysis of the serial circulating tumor cell count during neoadjuvant chemotherapy in breast cancer patients.

  • Sungchan Gwark‎ et al.
  • Scientific reports‎
  • 2020‎

We evaluated the prognostic implications of the circulating tumor cell (CTC) count in non-metastatic, HER2-negative breast cancer patients who failed to achieve pathologic complete response (pCR) after neoadjuvant chemotherapy (NCT). A total of 173, non-metastatic breast cancer patients treated with NCT were prospectively enrolled. CTCs were obtained from blood drawn pre-NCT and post-NCT using a SMART BIOPSY SYSTEM isolation kit (Cytogen Inc., Seoul, Korea) with immunofluorescence staining. Excluding 26 HER2-positive patients, Relapse-free survival (RFS) and overall survival (OS) related to the CTC count and the association of the CTC count with the treatment response to given therapy were analyzed in 147 HER2-negative patients. Among 147 HER2-negative patients, 28 relapses (19.0%) and 13 deaths (8.8%, all breast cancer-specific) were observed during a median follow-up of 37.3 months. One hundred and seven patients (72.8%) were hormone receptor-positive, and 40 patients (27.2%) had triple-negative breast cancer (TNBC). One or more CTCs were identified in 88 of the 147 patients (59.9%) before NCT and 77 of the 134 patients (52.4%) after NCT. In the entire HER2-negative patient cohort, the initial nodal status was the most significant factor influencing RFS and OS. In TNBC, 11 patients (27.5%) achieved pCR and patients that failed to achieve pCR with ≥ 5 CTCs after NCT, showed worse RFS (HR, 10.66; 95% CI, 1.80-63.07; p = 0.009) and OS (HR, 14.00; 95% CI, 1.26-155.53; p = 0.032). The patients with residual tumor and a high number of the CTCs after NCT displayed the worse outcome. These findings could provide justification to launch a future, well designed trial with longer follow-up data to obtain regulatory approval for clinical use of the assay, especially for the ER-positive, HER2-negative breast cancer subset.


Identification of circulating tumor cells with EML4-ALK translocation using fluorescence in situ hybridization in advanced ALK-positive patients with lung cancer.

  • Young Hun Kim‎ et al.
  • Oncology letters‎
  • 2018‎

Analysis of anaplastic lymphoma kinase (ALK) rearrangement in non-small cell lung cancer (NSCLC) is considered to be a useful tool when considering predictive biomarker detection for evaluating eligibility for targeted therapy. It is not always possible to perform a tumor biopsy in patients. Isolation and culturing of circulating tumor cells (CTCs) may be an alternative to tumor biopsies for the diagnosis of ALK rearrangement. Blood was collected from 22 patients with NSCLC harboring ALK rearrangement and was divided into two groups: One for immunofluorescence staining and the other for culture. Samples were filtered by size and cultured CTCs were analyzed for echinoderm microtubule-associated protein-like 4-ALK translocation using fluorescence in situ hybridization. CTCs positive for epithelial cell adhesion molecule and CTCs exhibiting ALK rearrangement were detected. Therefore, CTCs may be used as a potential alternative method to tissue biopsy for diagnosing ALK rearrangement. Additionally, this method may have clinical applications including serial blood sampling for the development of personalized cancer therapy based on individual genomic information.


Tranexamic Acid Diminishes Laser-Induced Melanogenesis.

  • Myoung Shin Kim‎ et al.
  • Annals of dermatology‎
  • 2015‎

The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood.


Alterations of Epidermal Lipid Profiles and Skin Microbiome in Children With Atopic Dermatitis.

  • Jihyun Kim‎ et al.
  • Allergy, asthma & immunology research‎
  • 2023‎

We aimed to investigate epidermal lipid profiles and their association with skin microbiome compositions in children with atopic dermatitis (AD).


Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis.

  • Reeja S Maskey‎ et al.
  • Nucleic acids research‎
  • 2017‎

Germline mutations in SPRTN cause Ruijs-Aalfs syndrome (RJALS), a disorder characterized by genome instability, progeria and early onset hepatocellular carcinoma. Spartan, the protein encoded by SPRTN, is a nuclear metalloprotease that is involved in the repair of DNA-protein crosslinks (DPCs). Although Sprtn hypomorphic mice recapitulate key progeroid phenotypes of RJALS, whether this model expressing low amounts of Spartan is prone to DPC repair defects and spontaneous tumors is unknown. Here, we showed that the livers of Sprtn hypomorphic mice accumulate DPCs containing Topoisomerase 1 covalently linked to DNA. Furthermore, these mice exhibited DNA damage, aneuploidy and spontaneous tumorigenesis in the liver. Collectively, these findings provide evidence that partial loss of Spartan impairs DPC repair and tumor suppression.


Spartan deficiency causes genomic instability and progeroid phenotypes.

  • Reeja S Maskey‎ et al.
  • Nature communications‎
  • 2014‎

Spartan (also known as DVC1 and C1orf124) is a PCNA-interacting protein implicated in translesion synthesis, a DNA damage tolerance process that allows the DNA replication machinery to replicate past nucleotide lesions. However, the physiological relevance of Spartan has not been established. Here we report that Spartan insufficiency in mice causes chromosomal instability, cellular senescence and early onset of age-related phenotypes. Whereas complete loss of Spartan causes early embryonic lethality, hypomorphic mice with low amounts of Spartan are viable. These mice are growth retarded and develop cataracts, lordokyphosis and cachexia at a young age. Cre-mediated depletion of Spartan from conditional knockout mouse embryonic fibroblasts results in impaired lesion bypass, incomplete DNA replication, formation of micronuclei and chromatin bridges and eventually cell death. These data demonstrate that Spartan plays a key role in maintaining structural and numerical chromosome integrity and suggest a link between Spartan insufficiency and progeria.


Regulation of error-prone translesion synthesis by Spartan/C1orf124.

  • Myoung Shin Kim‎ et al.
  • Nucleic acids research‎
  • 2013‎

Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS.


Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.

  • Seung Seog Han‎ et al.
  • PloS one‎
  • 2018‎

Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI) training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN) trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively), 125 images from Hallym University (C dataset), and 939 images from Seoul National University (D dataset). The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks) results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98), (82.7 / 96.7 / 0.95), (92.3 / 79.3 / 0.93), (87.7 / 69.3 / 0.82) for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01) higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.


Skin cancer risk of menopausal hormone therapy in a Korean cohort.

  • Jin-Sung Yuk‎ et al.
  • Scientific reports‎
  • 2023‎

Conflicting studies exist on the association between menopausal hormone therapy (MHT) and skin cancers, such as melanoma and non-melanoma skin cancer (NMSC). This retrospective cohort study aimed to evaluate the risk of skin cancer from MHT using data from 2002 to 2019 from the National Health Insurance Service in South Korea. We included 192,202 patients with MHT and 494,343 healthy controls. Women > 40 years who had menopause between 2002 and 2011 were included. Patients with MHT had at least one MHT for at least 6 months and healthy controls had never been prescribed MHT agents. We measured the incidence of melanoma and NMSC. Melanoma developed in 70 (0.03%) patients with MHT and 249 (0.05%) controls, while the incidence of NMSC was 417 (0.22%) in the MHT group and 1680 (0.34%) in the controls. Tibolone (hazard ratio [HR] 0.812, 95% confidence interval [CI] 0.694-0.949) and combined oestrogen plus progestin by the manufacturer (COPM; HR 0.777, 95% CI 0.63-0.962) lowered the risk of NMSC, while other hormone groups did not change the risk. Overall, MHT was not associated with melanoma incidence in menopausal Korean women. Instead, tibolone and COPM were associated with a decrease in NMSC occurrence.


Evaluation of a novel approach to circulating tumor cell isolation for cancer gene panel analysis in patients with breast cancer.

  • Soo Jeong Lee‎ et al.
  • Oncology letters‎
  • 2017‎

Liquid biopsy isolation of circulating tumor cells (CTCs) allows the genomic analysis of CTCs, which is useful in the determination of personalized cancer therapy. In the present study, CTCs from patients with breast cancer were enriched and successfully analyzed using cancer gene panel analysis. Blood samples from 11 patients with breast cancer were collected and CTCs enriched for using size-based filtration. The enriched CTCs were analyzed using immunofluorescence staining with antibodies directed against epithelial cell adhesion molecule (EpCAM) and cluster of differentiation 45. The genomic DNA of CTCs was extracted, amplified and 50 genes screened for mutations using the Ion AmpliSeq™ Cancer Hotspot Panel v2. EpCAM staining detected CTCs in 10/11 patients and the average CTC count was 3.9 in 5 ml blood. The average purity of enriched CTCs was 14.2±29.4% and the average amount of amplified DNA was 28.6±11.9 µg. Catalogue Of Somatic Mutations In Cancer mutations were detected in the CTCs and included IDH2, TP53, NRAS, IDH1, PDGFRA, HRAS, STK11, EGFR, PTEN, MLH1, PIK3CA, CDKN2A, KIT and SMARCB1. In conclusion, a novel size-based filtration approach for the isolation of CTCs was evaluated and successfully applied for the genomic analysis of CTCs from patients with breast cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: