Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches.

  • Michelle L Brinkmeier‎ et al.
  • Genomics‎
  • 2009‎

We report a catalog of the mouse embryonic pituitary gland transcriptome consisting of five cDNA libraries including wild type tissue from E12.5 and E14.5, Prop1(df/df) mutant at E14.5, and two cDNA subtractions: E14.5 WT-E14.5 Prop1(df/df) and E14.5 WT-E12.5 WT. DNA sequence information is assembled into a searchable database with gene ontology terms representing 12,009 expressed genes. We validated coverage of the libraries by detecting most known homeobox gene transcription factor cDNAs. A total of 45 homeobox genes were detected as part of the pituitary transcriptome, representing most expected ones, which validated library coverage, and many novel ones, underscoring the utility of this resource as a discovery tool. We took a similar approach for signaling-pathway members with novel pituitary expression and found 157 genes related to the BMP, FGF, WNT, SHH and NOTCH pathways. These genes are exciting candidates for regulators of pituitary development and function.


Transcriptional network dynamics in macrophage activation.

  • Roland Nilsson‎ et al.
  • Genomics‎
  • 2006‎

Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes.


Genomic organization of transcriptomes in mammals: Coregulation and cofunctionality.

  • Antje Purmann‎ et al.
  • Genomics‎
  • 2007‎

In studies of their transcriptional activity, genomes have shown a high order of organization. We assessed the question of how genomically neighboring genes are transcriptionally coupled across tissues and what could be the driving force behind their coupling. We focused our analysis on the transcriptome information for 13 tissues of Mus musculus and 79 tissues of Homo sapiens. The analysis of coexpression patterns of genomically adjacent genes across tissues revealed 2619 and 1275 clusters of highly coexpressed genes, respectively. Most of these clusters consist of pairs and triplets of genes. They span a limited genomic length and are phylogenetically conserved between human and mouse. These clusters consist mainly of nonparalogous genes and show a decreased functional and similar regulatory relationship to one another compared to general genomic neighbors. We hypothesize that these clusters trace back to large-scale, qualitative, persistent reorganizations of the transcriptome, while transcription factor regulation is likely to handle fine-tuning of transcription on shorter time scales. Our data point to so far uncharacterized cis-acting units and reject cofunctionality as a driving force.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: