Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals.

  • Wilhelm Palm‎ et al.
  • PLoS biology‎
  • 2013‎

Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses.


Multimodal Somatostatin Receptor Theranostics Using [(64)Cu]Cu-/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a Mouse Pheochromocytoma Model.

  • Martin Ullrich‎ et al.
  • Theranostics‎
  • 2016‎

Pheochromocytomas and extra-adrenal paragangliomas (PHEO/PGLs) are rare catecholamine-producing chromaffin cell tumors. For metastatic disease, no effective therapy is available. Overexpression of somatostatin type 2 receptors (SSTR2) in PHEO/PGLs promotes interest in applying therapies using somatostatin analogs linked to radionuclides and/or cytotoxic compounds, such as [(177)Lu]Lu-DOTA-(Tyr(3))octreotate (DOTATATE) and AN-238. Systematic evaluation of such therapies for the treatment of PHEO/PGLs requires sophisticated animal models. In this study, the mouse pheochromocytoma (MPC)-mCherry allograft model showed high tumor densities of murine SSTR2 (mSSTR2) and high tumor uptake of [(64)Cu]Cu-DOTATATE. Using tumor sections, we assessed mSSTR2-specific binding of DOTATATE, AN-238, and somatostatin-14. Therapeutic studies showed substantial reduction of tumor growth and tumor-related renal monoamine excretion in tumor-bearing mice after treatment with [(177)Lu]Lu-DOTATATE compared to AN-238 and doxorubicin. Analyses did not show agonist-dependent receptor downregulation after single mSSTR2-targeting therapies. This study demonstrates that the MPC-mCherry model is a uniquely powerful tool for the preclinical evaluation of SSTR2-targeting theranostic applications in vivo. Our findings highlight the therapeutic potential of somatostatin analogs, especially of [(177)Lu]Lu-DOTATATE, for the treatment of metastatic PHEO/PGLs. Repeated treatment cycles, fractionated combinations of SSTR2-targeting radionuclide and cytotoxic therapies, and other adjuvant compounds addressing additional mechanisms may further enhance therapeutic outcome.


Morphology, Biochemistry, and Pathophysiology of MENX-Related Pheochromocytoma Recapitulate the Clinical Features.

  • Tobias Wiedemann‎ et al.
  • Endocrinology‎
  • 2016‎

Pheochromocytomas (PCCs) are tumors arising from neural crest-derived chromaffin cells. There are currently few animal models of PCC that recapitulate the key features of human tumors. Because such models may be useful for investigations of molecular pathomechanisms and development of novel therapeutic interventions, we characterized a spontaneous animal model (multiple endocrine neoplasia [MENX] rats) that develops endogenous PCCs with complete penetrance. Urine was longitudinally collected from wild-type (wt) and MENX-affected (mutant) rats and outputs of catecholamines and their O-methylated metabolites determined by mass spectrometry. Adrenal catecholamine contents, cellular ultrastructure, and expression of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were also determined in wt and mutant rats. Blood pressure was longitudinally measured and end-organ pathology assessed. Compared with wt rats, mutant animals showed age-dependent increases in urinary outputs of norepinephrine (P = .0079) and normetanephrine (P = .0014) that correlated in time with development of tumor nodules, increases in blood pressure, and development of hypertension-related end-organ pathology. Development of tumor nodules, which lacked expression of N-methyltransferase, occurred on a background of adrenal medullary morphological and biochemical changes occurring as early as 1 month of age and involving increased adrenal medullary concentrations of dense cored vesicles, tissue contents of both norepinephrine and epinephrine, and urinary outputs of metanephrine, the metabolite of epinephrine. Taken together, MENX-affected rats share several biochemical and pathophysiological features with PCC patients. This model thus provides a suitable platform to study the pathogenesis of PCC for preclinical translational studies aimed at the development of novel therapies for aggressive forms of human tumors.


Endothelial factors mediate aldosterone release via PKA-independent pathways.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

Aldosterone synthesis is primarily regulated by angiotensin II and potassium ions. In addition, endothelial cell-secreted factors have been shown to regulate mineralocorticoid release. We analyzed the pathways that mediate endothelial cell-factor-induced aldosterone release from adrenocortical cells, NCI-H295R using endothelial cell-conditioned medium (ECM). The cAMP antagonist Rp-cAMP caused a 44% decrease in the ECM-induced aldosterone release but inhibition of cAMP-dependent PKA had no effect on aldosterone release. Interestingly, inhibition of cAMP-regulated guanine nucleotide exchange factor Epac with brefeldin-A decreased the ECM-induced aldosterone release by 45%. Similarly, inhibition of p38 MAP-kinase; PI-3-kinase and PKB significantly reduced the ECM-induced aldosterone release whereas inhibition of ERK1/2 and PKC did not decrease aldosterone release. These results provide evidence for the existence of a cAMP-dependent but PKA-independent pathway in mediating the ECM-induced aldosterone release and the significant influence of more than one signaling mechanism.


Endothelial cell-mediated regulation of aldosterone release from human adrenocortical cells.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2007‎

Endothelial cells play an important role in the development and functioning of endocrine tissue and endothelial cell-derived factors have been shown to regulate mineralocorticoid release in bovine adrenal cells. In the present study, we analysed the role of human endothelial cells in the synthesis and release of aldosterone from adrenocortical cells (NCI-H295R). Endothelial cell-induced aldosterone release was rapid and lasted as a long-term effect over a period of 48 h. This stimulant effect was influenced by the duration of endothelial cell conditioning and decreased linearly with increasing dilutions of the conditioned medium. At the molecular level, an increase in the mRNA transcripts of aldosterone synthase and StAR could be observed. Cellular interaction with endothelial cell-factors enhanced the activation of CRE, and the promoter activity of both StAR and SF-1 reporter genes. In conclusion, human endothelial cells are important intra-adrenal regulators of human aldosterone synthesis and release.


Differential expression and action of Toll-like receptors in human adrenocortical cells.

  • Waldemar Kanczkowski‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

During sepsis, an intact adrenal gland glucocorticoid stress response is critical for survival. Recently, we have shown that Toll-like receptors, particularly TLR2 and TLR4, are crucial in HPA axis regulation following inflammation, establishing a direct link between bacterial and viral ligands and the endocrine stress response. However, the exact role which TLRs play in adrenal homeostasis and malfunction is not yet sufficiently known. Using quantitative real-time PCR, confocal microscopy and the NF-kappaB reporter gene assay, we aimed to analyse both, expression and function of all relevant TLRs in the human adrenocortical cell line-NCI-H295R and adrenal cells in primary culture. Our results demonstrate a differential expression pattern of TLR1-9 in human adrenocortical cells as compared to immune cells and adrenocortical cancer cells. Consequently, activation of these cells by bacterial ligands leads to differential induction of cytokines including IL6, IL8 and TNF-alpha. Therefore, Toll-like receptors expression and function is a novel feature of the adrenal stress system contributing to adrenal tissue homeostasis, regeneration and tumorigenesis.


Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation.

  • Rubén García-Martín‎ et al.
  • Molecular and cellular biology‎
  • 2016‎

Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction.


Adrenocortical changes and arterial hypertension in lipoatrophic A-ZIP/F-1 mice.

  • Valeria Lamounier-Zepter‎ et al.
  • Molecular and cellular endocrinology‎
  • 2008‎

The A-ZIP/F-1 transgenic mouse is a model of lipoatrophic diabetes with severe insulin resistance, hyperglycemia and hyperlipidemia. Recently, a regulatory role of adipose tissue on adrenal gland function and blood pressure has been suggested. To further explore the importance of adipose tissue in the regulation of adrenal function and blood pressure, we studied this mouse model of lipodystrophy. A-ZIP/F-1 mice exhibit significantly elevated systolic and diastolic blood pressure values despite lack of white adipose tissue and its hormones. Furthermore, A-ZIP/F-1 lipoatrophic mice have a significant reduction of adrenal zona glomerulosa, while plasma aldosterone levels and aldosterone synthase mRNA expression remain unchanged. On the other hand, lipoatrophic mice present elevated corticosterone levels but no adrenocortical hyperplasia. Ultrastructural analysis of adrenal gland show significant alterations in adrenocortical cells, with conformational changes of mitochondrial internal membranes and high amounts of liposomes. In conclusion, lipodystrophy in A-ZIP/F-1 mice is associated with hypertension, possibly due to hypercorticosteronemia and/or others metabolic-vascular changes.


Notch is Not Involved in Physioxia-Mediated Stem Cell Maintenance in Midbrain Neural Stem Cells.

  • Anne Herrmann‎ et al.
  • International journal of stem cells‎
  • 2023‎

The physiological oxygen tension in fetal brains (∼3%, physioxia) is beneficial for the maintenance of neural stem cells (NSCs). Sensitivity to oxygen varies between NSCs from different fetal brain regions, with midbrain NSCs showing selective susceptibility. Data on Hif-1α/Notch regulatory interactions as well as our observations that Hif-1α and oxygen affect midbrain NSCs survival and proliferation prompted our investigations on involvement of Notch signalling in physioxia-dependent midbrain NSCs performance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: