Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Multimodal profiling of term human decidua demonstrates immune adaptations with pregravid obesity.

  • Suhas Sureshchandra‎ et al.
  • Cell reports‎
  • 2023‎

Leukocyte diversity of the first-trimester maternal-fetal interface has been extensively described; however, the immunological landscape of the term decidua remains poorly understood. We therefore profiled human leukocytes from term decidua collected via scheduled cesarean delivery. Relative to the first trimester, our analyses show a shift from NK cells and macrophages to T cells and enhanced immune activation. Although circulating and decidual T cells are phenotypically distinct, they demonstrate significant clonotype sharing. We also report significant diversity within decidual macrophages, the frequency of which positively correlates with pregravid maternal body mass index. Interestingly, the ability of decidual macrophages to respond to bacterial ligands is reduced with pregravid obesity, suggestive of skewing toward immunoregulation as a possible mechanism to safeguard the fetus against excessive maternal inflammation. These findings are a resource for future studies investigating pathological conditions that compromise fetal health and reproductive success.


Single-cell RNA sequencing reveals immunological rewiring at the maternal-fetal interface following asymptomatic/mild SARS-CoV-2 infection.

  • Suhas Sureshchandra‎ et al.
  • Cell reports‎
  • 2022‎

While severe coronavirus 2019 (COVID-19) is associated with immune activation at the maternal-fetal interface, responses to asymptomatic/mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy remain unknown. Here, we assess immunological adaptations in blood and term decidua in response to asymptomatic/mild disease in pregnant women. We report attenuated antigen presentation and type I interferon (IFN) signaling pathways, loss of tissue-resident decidual macrophages, and upregulated cytokine/chemokine signaling in monocyte-derived decidual macrophages. Furthermore, we describe increased frequencies of activated tissue-resident T cells and decreased abundance of regulatory T cells with infection while frequencies of cytotoxic CD4/CD8 T cells are increased in the blood. In contrast to decidual macrophages, type I IFN signaling is higher in decidual T cells. Finally, infection leads to a narrowing of T cell receptor diversity in both blood and decidua. Collectively, these observations indicate that asymptomatic/mild COVID-19 during pregnancy results in remodeling of the immunological landscape of the maternal-fetal interface, with a potential for long-term adverse outcomes for the offspring.


Deep immune profiling of the maternal-fetal interface with mild SARS-CoV-2 infection.

  • Suhas Sureshchandra‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Pregnant women are an at-risk group for severe COVID-19, though the majority experience mild/asymptomatic disease. Although severe COVID-19 has been shown to be associated with immune activation at the maternal-fetal interface even in the absence of active viral replication, the immune response to asymptomatic/mild COVID-19 remains unknown. Here, we assessed immunological adaptations in both blood and term decidua from 9 SARS-exposed pregnant women with asymptomatic/mild disease and 15 pregnant SARS-naive women. In addition to selective loss of tissue-resident decidual macrophages, we report attenuation of antigen presentation and type I IFN signaling but upregulation of inflammatory cytokines and chemokines in blood monocyte derived decidual macrophages. On the other hand, infection was associated with remodeling of the T cell compartment with increased frequencies of activated CD69+ tissue-resident T cells and decreased abundance of Tregs. Interestingly, frequencies of cytotoxic CD4 and CD8 T cells increased only in the blood, while CD8 effector memory T cells were expanded in the decidua. In contrast to decidual macrophages, signatures of type I IFN signaling were increased in decidual T cells. Finally, T cell receptor diversity was significantly reduced with infection in both compartments, albeit to a much greater extent in the blood. The resulting aberrant immune activation in the placenta, even with asymptomatic disease may alter the exquisitely sensitive developing fetal immune system, leading to long-term adverse outcomes for offspring.


Mild/asymptomatic COVID-19 in unvaccinated pregnant mothers impairs neonatal immune responses.

  • Brianna M Doratt‎ et al.
  • JCI insight‎
  • 2023‎

Maternal SARS-CoV-2 infection triggers placental inflammation and alters cord blood immune cell composition. However, most studies focus on outcomes of severe maternal infection. Therefore, we analyzed cord blood and chorionic villi from newborns of unvaccinated mothers who experienced mild/asymptomatic SARS-CoV-2 infection during pregnancy. We investigated immune cell rewiring using flow cytometry, single-cell RNA sequencing, and functional readouts using ex vivo stimulation with TLR agonists and pathogens. Maternal infection was associated with increased frequency of memory T and B cells and nonclassical monocytes in cord blood. Ex vivo T and B cell responses to stimulation were attenuated, suggesting a tolerogenic state. Maladaptive responses were also observed in cord blood monocytes, where antiviral responses were dampened but responses to bacterial TLRs were increased. Maternal infection was also associated with expansion and activation of placental Hofbauer cells, secreting elevated levels of myeloid cell-recruiting chemokines. Moreover, we reported increased activation of maternally derived monocytes/macrophages in the fetal placenta that were transcriptionally primed for antiviral responses. Our data indicate that even in the absence of vertical transmission or symptoms in the neonate, mild/asymptomatic maternal COVID-19 altered the transcriptional and functional state in fetal immune cells in circulation and in the placenta.


Maternal obesity blunts antimicrobial responses in fetal monocytes.

  • Suhas Sureshchandra‎ et al.
  • eLife‎
  • 2023‎

Maternal pre-pregnancy (pregravid) obesity is associated with adverse outcomes for both mother and offspring. Amongst the complications for the offspring is increased susceptibility and severity of neonatal infections necessitating admission to the intensive care unit, notably bacterial sepsis and enterocolitis. Previous studies have reported aberrant responses to LPS and polyclonal stimulation by umbilical cord blood monocytes that were mediated by alterations in the epigenome. In this study, we show that pregravid obesity dysregulates umbilical cord blood monocyte responses to bacterial and viral pathogens. Specifically, interferon-stimulated gene expression and inflammatory responses to respiratory syncytial virus (RSV) and E. coli were significantly dampened, respectively . Although upstream signaling events were comparable, translocation of the key transcription factor NF-κB and chromatin accessibility at pro-inflammatory gene promoters following TLR stimulation was significantly attenuated. Using a rhesus macaque model of western style diet-induced obesity, we further demonstrate that this defect is detected in fetal peripheral monocytes and tissue-resident macrophages during gestation. Collectively, these data indicate that maternal obesity alters metabolic, signaling, and epigenetic profiles of fetal monocytes leading to a state of immune paralysis during late gestation and at birth.


Mild/Asymptomatic Maternal SARS-CoV-2 Infection Leads to Immune Paralysis in Fetal Circulation and Immune Dysregulation in Fetal-Placental Tissues.

  • Brianna M Doratt‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Few studies have addressed the impact of maternal mild/asymptomatic SARS-CoV-2 infection on the developing neonatal immune system. In this study, we analyzed umbilical cord blood and placental chorionic villi from newborns of unvaccinated mothers with mild/asymptomatic SARSCoV-2 infection during pregnancy using flow cytometry, single-cell transcriptomics, and functional assays. Despite the lack of vertical transmission, levels of inflammatory mediators were altered in cord blood. Maternal infection was also associated with increased memory T, B cells, and non-classical monocytes as well as increased activation. However, ex vivo responses to stimulation were attenuated. Finally, within the placental villi, we report an expansion of fetal Hofbauer cells and infiltrating maternal macrophages and rewiring towards a heightened inflammatory state. In contrast to cord blood monocytes, placental myeloid cells were primed for heightened antiviral responses. Taken together, this study highlights dysregulated fetal immune cell responses in response to mild maternal SARS-CoV-2 infection during pregnancy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: