Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Potential dual imaging nanoparticle: Gd2O3 nanoparticle.

  • Md Wasi Ahmad‎ et al.
  • Scientific reports‎
  • 2015‎

Gadolinium (Gd) is a unique and powerful element in chemistry and biomedicine which can be applied simultaneously to magnetic resonance imaging (MRI), X-ray computed tomography (CT), and neutron capture therapy for cancers. This multifunctionality can be maximized using gadolinium oxide (Gd2O3) nanoparticles (GNPs) because of the large amount of Gd per GNP, making both diagnosis and therapy (i.e., theragnosis) for cancers possible using only GNPs. In this study, the T1 MRI and CT dual imaging capability of GNPs is explored by synthesizing various iodine compound (IC) coated GNPs (IC-GNPs). All the IC-GNP samples showed stronger X-ray absorption and larger longitudinal water proton relaxivities (r1 = 26-38 s(-1) mM(-1) and r2/r1 = 1.4-1.9) than the respective commercial contrast agents. In vivo T1 MR and CT images of mice were also acquired, supporting that the GNP is a potential dual imaging agent.


Voxel-wise analysis of diffusion tensor imaging for clinical outcome of cochlear implantation: retrospective study.

  • Yongmin Chang‎ et al.
  • Clinical and experimental otorhinolaryngology‎
  • 2012‎

To evaluate retrospectively, the possible difference in diffusion tensor imaging (DTI) metric of fractional anisotropy (FA) between good and poor surgical outcome cochlear implantation (CI) patients using investigator-independent voxel-wise analysis.


Working memory impairment in fibromyalgia patients associated with altered frontoparietal memory network.

  • Jeehye Seo‎ et al.
  • PloS one‎
  • 2012‎

Fibromyalgia (FM) is a disorder characterized by chronic widespread pain and frequently associated with other symptoms. Patients with FM commonly report cognitive complaints, including memory problem. The objective of this study was to investigate the differences in neural correlates of working memory between FM patients and healthy subjects, using functional magnetic resonance imaging (MRI).


Alterations in power spectral density in motor- and pain-related networks on neuropathic pain after spinal cord injury.

  • Eunhee Park‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

The mechanisms by which mobility function and neuropathic pain are mutually influenced by supraspinal plasticity in motor- and pain-related brain networks following spinal cord injury (SCI) remains poorly understood.


Image-Guided Neutron Capture Therapy Using the Gd-DO3A-BTA Complex as a New Combinatorial Treatment Approach.

  • Ki-Hye Jung‎ et al.
  • Contrast media & molecular imaging‎
  • 2018‎

Gadolinium-neutron capture therapy (Gd-NCT) is based on the nuclear capture reaction that occurs when 157Gd is irradiated with low energy thermal neutrons to primarily produce gamma photons. Herein, we investigated the effect of neutron capture therapy (NCT) using a small molecular gadolinium complex, Gd-DO3A-benzothiazole (Gd-DO3A-BTA), which could be a good candidate for use as an NCT drug due to its ability to enter the intracellular nuclei of tumor cells. Furthermore, MRI images of Gd-DO3A-BTA showed a clear signal enhancement in the tumor, and the images also played a key role in planning NCT by providing accurate information on the in vivo uptake time and duration of Gd-DO3A-BTA. We injected Gd-DO3A-BTA into MDA-MB-231 breast tumor-bearing mice and irradiated the tumors with cyclotron neutrons at the maximum accumulation time (postinjection 6 h); then, we observed the size of the growing tumor for 60 days. Gd-DO3A-BTA showed good therapeutic effects of chemo-Gd-NCT for the in vivo tumor models. Simultaneously, the Gd-DO3A-BTA groups ([Gd-DO3A-BTA(+), NCT(+)]) showed a significant reduction in tumor size (p < 0.05), and the inhibitory effect on tumor growth was exhibited in the following order: [Gd-DO3A-BTA(+), NCT(+)] > [Gd-DO3A-BTA(+), NCT(-)] > [Gd-DO3A-BTA(-), NCT(+)] > [Gd-DO3A-BTA(-), NCT(-)]. On day 60, the [Gd-DO3A-BTA(+), NCT(+)] and [Gd-DO3A-BTA(-), NCT(-)] groups exhibited an approximately 4.5-fold difference in tumor size. Immunohistochemistry studies demonstrated that new combinational therapy with chemo-Gd-NCT could treat breast cancer by both the inhibition of tumor cell proliferation and induction of apoptosis-related proteins, with in vivo tumor monitoring by MRI.


Diffusion tensor imaging and voxel-based morphometry reveal corticospinal tract involvement in the motor dysfunction of adult-onset myotonic dystrophy type 1.

  • Jin-Sung Park‎ et al.
  • Scientific reports‎
  • 2018‎

Magnetic resonance imaging (MRI) studies have demonstrated that patients with myotonic dystrophy type 1 (DM1) exhibit gray and white matter abnormalities that are correlated with various genetic and neuropsychological measures. However, few MRI studies have focused on the correlations between brain abnormalities and overall motor function including gait performance. Here, we investigated the correlations between brain abnormalities, as assessed with MRI including diffusion tensor imaging (DTI), and motor performance, as assessed with the Medical Research Council sum score (MRCSS), 6-minute walk test (6MWT), and hand grip power, in patients with DM1. Eighteen patients with DM1 and twenty healthy controls participated in this study. The MRCSS and 6MWT reflect patients' general motor performance, particularly gait, while hand grip reflects the presence of myotonia. We found significant relationships between DTI parameters in the corticospinal tract (CST) and genetic factors and motor performance in patients with DM1. These findings suggest that CST involvement reflecting deterioration of the motor tracts may play a significant role in clinical myotonia. Further, a direct relationship between the cortical gray matter volume and DTI measures in the CST suggests that white matter abnormalities in the CST are strongly associated with volume reductions in the sensorimotor cortex of patients with DM1.


Flavonoid-Conjugated Gadolinium Complexes as Anti-Inflammatory Theranostic Agents.

  • Byeong Woo Yang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2022‎

In this study, we designed, synthesized, and evaluated gadolinium compounds conjugated with flavonoids as potential theranostic agents for the treatment of inflammation. These novel theranostic agents combine a molecular imaging agent and one of three flavonoids (galangin, chrysin, and 7-hydroxyflavone) as anti-inflammatory drugs as a single integrated platform. Using these agents, MR imaging showed contrast enhancement (>10 in CNR) at inflamed sites in an animal inflammation model, and subsequent MR imaging used to monitor the therapeutic efficacy of these integrated agents revealed changes in inflamed regions. The anti-inflammatory effects of these agents were demonstrated both in vitro and in vivo. Furthermore, the antioxidant efficacy of the agents was evaluated by measuring their reactive oxygen species scavenging properties. For example, Gd-galangin at 30 μM showed a three-fold higher ROS scavenging of DPPH. Taken together, our findings provide convincing evidence to indicate that flavonoid-conjugated gadolinium compounds can be used as potentially efficient theranostic agents for the treatment of inflammation.


Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging.

  • Shuwen Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.


Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T 1 magnetic resonance imaging contrast agents.

  • Xu Miao‎ et al.
  • RSC advances‎
  • 2018‎

For use as positive (T 1) magnetic resonance imaging contrast agents (MRI-CAs), gadolinium oxide (Gd2O3) nanoparticle colloids (i.e. nanoparticles coated with hydrophilic ligands) should be stable, non-toxic, and ultrasmall in particle diameter for renal excretion. In addition, they should have a high longitudinal water proton relaxivity (r 1) and r 2/r 1 ratio that is close to one (r 2 = transverse water proton relaxivity) for high-performance. In this study, we report ultrasmall Gd2O3 nanoparticle colloids [coating material = polyacrylic acid, M w = ∼5100 Da] satisfying these conditions. The particle diameter was monodisperse with an average value of 2.0 ± 0.1 nm. The colloidal suspension exhibited a high r 1 value of 31.0 ± 0.1 s-1 mM-1 and r 2/r 1 ratio of 1.2, where r 1 was ∼8 times higher than that of commercial Gd-chelates: the cooperative induction model was proposed to explain this. The effectiveness of the colloidal suspension as a high-performance T 1 MRI-CA was confirmed by taking in vivo T 1 MR images in a mouse after intravenous administration. Highly positive contrast enhancements were observed in various organs of the mouse such as the liver, kidneys, and bladder. The colloidal suspension was then excreted through the bladder.


Glioblastoma-Derived Exosomes as Nanopharmaceutics for Improved Glioma Treatment.

  • Hyeji Lee‎ et al.
  • Pharmaceutics‎
  • 2022‎

The use of cancer-derived exosomes has been studied in several cancer types, but the cancer-targeting efficacy of glioma-derived exosomes has not been investigated in depth for malignant glioblastoma (GBM) cells. In this study, exosomes were derived from U87MG human glioblastoma cells, and selumetinib, a new anticancer drug, was loaded into the exosomes. We observed the tropism of GBM-derived exosomes in vitro and in vivo. We found that the tropism of GBM-derived exosomes is in contrast to the behavior of non-exosome-enveloped drugs and non-GBM-specific exosomes in vitro and in vivo in an animal GBM model. We found that the tropism exhibited by GBM-derived exosomes can be utilized to shuttle selumetinib, with no specific targeting moiety, to GBM tumor sites. Therefore, our findings indicated that GBM-derived exosomes loaded with selumetinib had a specific antitumor effect on U87MG cells and were non-toxic to normal brain cells. These exosomes offer improved therapeutic prospects for glioblastoma therapy.


Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities.

  • Shuwen Liu‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2022‎

Water proton spin relaxivities, colloidal stability, and biocompatibility of nanoparticle magnetic resonance imaging (MRI) contrast agents depend on surface-coating ligands. In this study, hydrophilic and biocompatible polyethylenimines (PEIs) of different sizes (Mn = 1200 and 60,000 amu) were used as surface-coating ligands for ultrasmall holmium oxide (Ho2O3) nanoparticles. The synthesized PEI1200- and PEI60000-coated ultrasmall Ho2O3 nanoparticles, with an average particle diameter of 2.05 and 1.90 nm, respectively, demonstrated low cellular cytotoxicities, good colloidal stability, and appreciable transverse water proton spin relaxivities (r2) of 13.1 and 9.9 s-1mM-1, respectively, in a 3.0 T MR field with negligible longitudinal water proton spin relaxivities (r1) (i.e., 0.1 s-1mM-1) for both samples. Consequently, for both samples, the dose-dependent contrast changes in the longitudinal (R1) and transverse (R2) relaxation rate map images were negligible and appreciable, respectively, indicating their potential as efficient transverse T2 MRI contrast agents in vitro.


The Synthesis, Characterization, Molecular Docking and In Vitro Antitumor Activity of Benzothiazole Aniline (BTA) Conjugated Metal-Salen Complexes as Non-Platinum Chemotherapeutic Agents.

  • Md Kamrul Islam‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals to achieve selective and synergistic cytotoxicity. The compounds obtained were characterized by NMR spectroscopy, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The compounds L, MnL, FeL, CoL, and ZnL showed promising in vitro cytotoxicity against cancer cells, and they had a lower IC50 than that of the clinically used cisplatin. In particular, MnL had synergistic cytotoxicity against liver, breast, and colon cancer cells. Moreover, MnL, CoL, and CuL promoted the production of reactive oxygen species in HepG2 tumor cell lines. The lead compound of this series, MnL, remained stable in physiological settings, and docking results showed that it interacted rationally with the minor groove of DNA. Therefore, MnL may serve as a viable alternative to platinum-based chemotherapy.


Alterations of Power Spectral Density in Salience Network during Thought-action Fusion Induction Paradigm in Obsessive-compulsive Disorder.

  • Sang Won Lee‎ et al.
  • Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology‎
  • 2022‎

Recent studies highlighted the triple-network model which illustrated the interactions among three large-scale networks including salience network (SN). The functional magnetic resonance imaging used in this study was designed to investigate the characteristics of three large-scale networks associated with the thought-action fusion (TAF) in patients with obsessive-compulsive disorder (OCD) using power spectral density (PSD) analysis.


T2 relaxometry using 3.0-tesla magnetic resonance imaging of the brain in early- and late-onset restless legs syndrome.

  • Hye-Jin Moon‎ et al.
  • Journal of clinical neurology (Seoul, Korea)‎
  • 2014‎

Previous T2 relaxometry studies have provided evidence for regional brain iron deficiency in patients with restless legs syndrome (RLS). Measurement of the iron content in several brain regions, and in particular the substantia nigra (SN), in early- and late-onset RLS patients using T2 relaxometry have yielded inconsistent results. In this study the regional iron content was assessed in patients with early- and late-onset RLS using magnetic resonance imaging (MRI), and compared the results with those in controls.


Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

  • Ji-Young Kim‎ et al.
  • Pain‎
  • 2013‎

Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM.


Voxel-based Histographic Analysis of the Basilar Artery in Patients with Isolated Pontine Infarction.

  • Han Won Jang‎ et al.
  • Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine‎
  • 2016‎

The signal information per voxels of magnetic resonance imaging (MRI) for vessel wall could reflect the pathologic features of atherosclerotic vessels. The aim of this study is to evaluate the usefulness of magnetic resonance voxel-based histogram (VBH) of atherosclerotic basilar artery in patients with isolated pontine infarctions (PIs).


Altered power spectral density in the resting-state sensorimotor network in patients with myotonic dystrophy type 1.

  • Jin-Sung Park‎ et al.
  • Scientific reports‎
  • 2018‎

Myotonic dystrophy type 1 (DM1) is a multisystemic disease that involves the brain with several neurological symptoms. Although there were few imaging studies on DM1, no studies have investigated functional alterations in the sensorimotor network at rest in patients with DM1. In the current study, a power spectral density (PSD) analysis of resting-state fMRI data was performed to assess possible alteration in spontaneous neural activity of the sensorimotor network in patients with DM1. Compared to healthy controls, patients with DM1 showed higher PSD responses in the orbitofrontal cortex, parahippocampus and basal ganglia (corrected P < 0.05). Patients with DM1 showed higher PSD responses in white matter structures associated with motor function (corrected P < 0.05). Furthermore, correlation analysis indicated that the brain regions showing PSD differences were correlated with measures of motor performance (P < 0.05). In gray matter, our findings suggest that motor disability in DM1 is not an isolated deterioration of the motor power but a multimodal dysfunction that also involves the visual system. In addition, the widespread PSD alteration in white matter structures suggest that motor deficits in DM1 involve motor movement structures as well as structures important for its coordination and regulation.


MBP-11901 Inhibits Tumor Growth of Hepatocellular Carcinoma through Multitargeted Inhibition of Receptor Tyrosine Kinases.

  • Hyun Jin Park‎ et al.
  • Cancers‎
  • 2022‎

Hepatocellular carcinomas (HCCs) are aggressive tumors with a poor prognosis. Approved first-line treatments include sorafenib, lenvatinib, and a combination of atezolizumab and bevacizumab; however, they do not cure HCC. We investigated MBP-11901 as a drug candidate for HCC. Cell proliferation and cytotoxicity were evaluated using normal and cancer human liver cell lines, while Western blotting and flow cytometry evaluated apoptosis. The anticancer effect of MBP-11901 was verified in vitro through migration, invasion, colony formation, and JC-1 MMP assays. In mouse models, the tumor volume, tumor weight, and bodyweight were measured, and cancer cell proliferation and apoptosis were analyzed. The toxicity of MBP-11901 was investigated through GOT/GPT and histological analyses in the liver and kidney. The signaling mechanism of MBP-11901 was investigated through kinase assays, phosphorylation analysis, and in silico docking simulations. Results. MBP-11901 was effective against various human HCC cell lines, leading to the disappearance of most tumors when administered orally in animal models. This effect was dose-dependent, with no differences in efficacy according to administration intervals. MBP-11901 induced anticancer effects by targeting the signaling mechanisms of FLT3, VEGFR2, c-KIT, and PDGFRβ. MBP-11901 is suggested as a novel therapeutic agent for the treatment of advanced or unresectable liver cancer.


A comparison of MRI tissue relaxometry and ROI methods used to determine regional brain iron concentrations in restless legs syndrome.

  • Hye-Jin Moon‎ et al.
  • Medical devices (Auckland, N.Z.)‎
  • 2015‎

Magnetic resonance imaging relaxometry studies differed on the relaxometry methods and their approaches to determining the regions of interest (ROIs) in restless legs syndrome (RLS) patients. These differences could account for the variable and inconsistent results found across these studies. The aim of this study was to assess the relationship between the different relaxometry methods and different ROI approaches using each of these methods on a single population of controls and RLS subjects.


Effects of Cognitive Training in Mild Cognitive Impairmentmeasured by Resting State Functional Imaging.

  • Seungho Kim‎ et al.
  • Behavioral sciences (Basel, Switzerland)‎
  • 2020‎

Mild cognitive impairment (MCI) is defined as an intermediate state of cognitive alteration between normal aging and dementia. In this study, we performed a functional network connectivity analysis using resting-state functional magnetic resonance imaging to investigate the association between changes in functional connectivity in the brain and the improvement in cognitive abilities after cognitive training. A computerized cognitive training program was used to improve the abilities of fifteen participants with MCI. The cognitive training program (Comcog), which consists of three weekly sessions totaling 90 min, was conducted with all participants over six weeks. The cognitive abilities before (pre-Comcog) and after (post-Comcog) the cognitive training process were measured using a neurocognitive function test. After the Comcog, the participants enhanced their visual and verbal memories, attention, and visuo-motor coordination. The functional connectivity between cingulo-opercular (CON) and default mode (DMN) showed significant improvements after Comcog training. Therefore, our study suggests that cognitive training may improve the cognitive abilities of participants. This improvement was associated with an increase in the functional connectivity between DMN and CON. The increase in functional connectivity after cognitive training was specifically associated with overall cognitive functions, including executive, memory, decision-making, and motivational functions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: