Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Pharmacokinetics, metabolism and safety of deuterated L-DOPA (SD-1077)/carbidopa compared to L-DOPA/carbidopa following single oral dose administration in healthy subjects.

  • Frank Schneider‎ et al.
  • British journal of clinical pharmacology‎
  • 2018‎

SD-1077, a selectively deuterated precursor of dopamine (DA) structurally related to L-3,4-dihydroxyphenylalanine (L-DOPA), is under development for treatment of motor symptoms of Parkinson's disease. Preclinical models have shown slower metabolism of central deuterated DA. The present study investigated the peripheral pharmacokinetics (PK), metabolism and safety of SD-1077.


A 122.5-kilobase deletion of the P gene underlies the high prevalence of oculocutaneous albinism type 2 in the Navajo population.

  • Zanhua Yi‎ et al.
  • American journal of human genetics‎
  • 2003‎

Oculocutaneous albinism (OCA) is a genetically heterogeneous disorder. There are four known types of OCA: OCA1-OCA4. The clinical manifestations of all types of OCA include skin and hair hypopigmentation and visual impairment. Although there are a few documented observations of high frequency of albinism among Native Americans, including the Hopi, Zuni, Kuna, Jemez, Laguna, San Juan, and Navajo, no causative molecular defect has been previously reported. In the present study, we show that albinism in one Native American population, the Navajo, is caused by a LINE-mediated 122.5-kilobase deletion of the P gene, thus demonstrating that albinism in this population is OCA2. This deletion appears to be Navajo specific, because this allele was not detected in 34 other individuals with albinism who listed other Native American origins, nor has it been reported in any other ethnic group. The molecular characterization of this deletion allele allowed us to design a three-primer polymerase chain reaction system to estimate the carrier frequency in the Navajo population by screening 134 unrelated normally pigmented Navajos. The carrier frequency was found to be approximately 4.5%. The estimated prevalence of OCA2 in Navajos is between approximately 1 per 1,500 and 1 per 2,000. We further estimate that this mutation originated 400-1,000 years ago from a single founder.


Reconstructing Past Admixture Processes from Local Genomic Ancestry Using Wavelet Transformation.

  • Jean Sanderson‎ et al.
  • Genetics‎
  • 2015‎

Admixture between long-separated populations is a defining feature of the genomes of many species. The mosaic block structure of admixed genomes can provide information about past contact events, including the time and extent of admixture. Here, we describe an improved wavelet-based technique that better characterizes ancestry block structure from observed genomic patterns. principal components analysis is first applied to genomic data to identify the primary population structure, followed by wavelet decomposition to develop a new characterization of local ancestry information along the chromosomes. For testing purposes, this method is applied to human genome-wide genotype data from Indonesia, as well as virtual genetic data generated using genome-scale sequential coalescent simulations under a wide range of admixture scenarios. Time of admixture is inferred using an approximate Bayesian computation framework, providing robust estimates of both admixture times and their associated levels of uncertainty. Crucially, we demonstrate that this revised wavelet approach, which we have released as the R package adwave, provides improved statistical power over existing wavelet-based techniques and can be used to address a broad range of admixture questions.


An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree.

  • Fernando L Mendez‎ et al.
  • American journal of human genetics‎
  • 2013‎

We report the discovery of an African American Y chromosome that carries the ancestral state of all SNPs that defined the basal portion of the Y chromosome phylogenetic tree. We sequenced ∼240 kb of this chromosome to identify private, derived mutations on this lineage, which we named A00. We then estimated the time to the most recent common ancestor (TMRCA) for the Y tree as 338 thousand years ago (kya) (95% confidence interval = 237-581 kya). Remarkably, this exceeds current estimates of the mtDNA TMRCA, as well as those of the age of the oldest anatomically modern human fossils. The extremely ancient age combined with the rarity of the A00 lineage, which we also find at very low frequency in central Africa, point to the importance of considering more complex models for the origin of Y chromosome diversity. These models include ancient population structure and the possibility of archaic introgression of Y chromosomes into anatomically modern humans. The A00 lineage was discovered in a large database of consumer samples of African Americans and has not been identified in traditional hunter-gatherer populations from sub-Saharan Africa. This underscores how the stochastic nature of the genealogical process can affect inference from a single locus and warrants caution during the interpretation of the geographic location of divergent branches of the Y chromosome phylogenetic tree for the elucidation of human origins.


Isolation, contact and social behavior shaped genetic diversity in West Timor.

  • Meryanne K Tumonggor‎ et al.
  • Journal of human genetics‎
  • 2014‎

Timor, an eastern Indonesian island linking mainland Asia with Australia and the Pacific world, had a complex history, including its role as a contact zone between two language families (Austronesian and Trans-New Guinean), as well as preserving elements of a rich Austronesian cultural heritage, such as matrilocal marriage practices. Using an array of biparental (autosomal and X-chromosome single-nucleotide polymorphisms) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstruct a broad genetic profile of Timorese in the Belu regency of West Timor, including the traditional princedom of Wehali, focusing on the effects of cultural practices, such as language and social change, on patterns of genetic diversity. Sex-linked data highlight the different histories and social pressures experienced by women and men. Measures of diversity and population structure show that Timorese men had greater local mobility than women, as expected in matrilocal communities, where women remain in their natal village, whereas men move to the home village of their wife. Reaching further back in time, maternal loci (mitochondrial DNA and the X chromosome) are dominated by lineages with immigrant Asian origins, whereas paternal loci (Y chromosome) tend to exhibit lineages of the earliest settlers in the eastern Indonesian region. The dominance of Asian female lineages is especially apparent in the X chromosome compared with the autosomes, suggesting that women played a paramount role during and after the period of Asian immigration into Timor, perhaps driven by the matrilocal marriage practices of expanding Austronesian communities.


Complex Patterns of Admixture across the Indonesian Archipelago.

  • Georgi Hudjashov‎ et al.
  • Molecular biology and evolution‎
  • 2017‎

Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups.


A recent bottleneck of Y chromosome diversity coincides with a global change in culture.

  • Monika Karmin‎ et al.
  • Genome research‎
  • 2015‎

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Whole Exome Sequencing Reveals Homozygous Mutations in RAI1, OTOF, and SLC26A4 Genes Associated with Nonsyndromic Hearing Loss in Altaian Families (South Siberia).

  • Alexander Y Сhurbanov‎ et al.
  • PloS one‎
  • 2016‎

Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.


Small Traditional Human Communities Sustain Genomic Diversity over Microgeographic Scales despite Linguistic Isolation.

  • Murray P Cox‎ et al.
  • Molecular biology and evolution‎
  • 2016‎

At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case-study system-eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: