Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization.

  • Yujia Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host's immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.


Differential expression of microRNAs in the normal skin of the Han and Uyghur populations in Xinjiang Province.

  • Xiujuan Wu‎ et al.
  • Medicine‎
  • 2018‎

In this study, we investigated the expression of microRNAs (miRNAs) in the skin samples from the Han and Uyghur populations in Xinjiang, China. The miRNA levels of the normal skin samples from 10 individuals of Uyghur or Han were tested by microarray and the expression differentiations were compared. Among the 3100 probes for microarray, a total of 247 miRNAs were differentially expressed in the Han versus Uyghur population, including 76 upregulated miRNAs and 171 downregulated miRNAs. The most significantly upregulated miRNAs were miR-141-3p, miR-1915-5p, kshv-miR-K12-2-5p, and miR-222-3p. And the most significantly downregulated miRNAs included miR-1207-3p and miR-625-3p. We have confirmed the upregulation of miR-141-3p and miR-1915-5p by qRT-PCR. There were no statistical correlations in the expression of miR-141-3p or miR-1915-5p with the age or gender within each group. Interestingly, the differentially expressed miRNAs were enriched in some cancer-related pathways, such as p53, mitogen-activated protein kinase, and WNT signal pathways. Collectively, these dysregulated expressions of the miRNAs may provide a better understanding of the differences in the incidence and mortality of skin-related carcinoma between the Uyghur and Han populations in Xinjiang.


The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance.

  • Xiujuan Wu‎ et al.
  • PLoS pathogens‎
  • 2019‎

Pandemics of vector-borne human and plant diseases often depend on the behaviors of their arthropod vectors. Arboviruses, including many bunyaviruses, manipulate vector behavior to accelerate their own transmission to vertebrates, birds, insects, and plants. However, the molecular mechanism underlying this manipulation remains elusive. Here, we report that the non-structural protein NSs of Tomato spotted wilt orthotospovirus, a prototype of the Tospoviridae family and the Orthotospovirus genus, is a key viral factor that indirectly modifies vector preference and increases vector performance. NSs suppresses the biosynthesis of plant volatile monoterpenes, which serve as repellents of the vector western flower thrips (WFT, Frankliniella occidentalis). NSs directly interacts with MYC2, the jasmonate (JA) signaling master regulator and its two close homologs MYC3 and MYC4, to disable JA-mediated activation of terpene synthase genes. The dysfunction of the MYCs subsequently attenuates host defenses, increases the attraction of thrips, and improves thrips fitness. Moreover, MYC2 associated with NSs of Tomato zonate spot orthotospovirus, another Euro/Asian-type orthotospovirus, suggesting that MYC2 is an evolutionarily conserved target of Orthotospovirus species for suppression of terpene-based resistance to promote vector performance. These findings elucidate the molecular mechanism through which an orthotospovirus indirectly manipulates vector behaviors and therefore facilitates pathogen transmission. Our results provide insights into the molecular mechanisms by which Orthotospovirus NSs counteracts plant immunity for pathogen transmission.


"What I thought was so important isn't really that important": international perspectives on making meaning during the first wave of the COVID-19 pandemic.

  • Irina Todorova‎ et al.
  • Health psychology and behavioral medicine‎
  • 2021‎

The global COVID-19 pandemic has had a significant impact on the physical and mental health of people everywhere. The aim of the study is to understand how people living in 15 countries around the globe experience an unexpected crisis which threatens their health and that of loved ones, and how they make meaning of this disruption in their narratives.


Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold.

  • Ji Bao‎ et al.
  • International journal of molecular medicine‎
  • 2016‎

In the present study, we aimed to determine whether the combination of aggregate culture and decellularized liver scaffolds (DLSs) promoted the hepatic differentiation of murine bone marrow-derived mesenchymal stem cells (BM-MSCs) into high yields of mature hepatocytes in vitro. Four culturing methods for differentiation [single cell (2D), spheroids (3D), 2D + DLS and 3D + DLS] were studied. To determine the differentiation stages of the MSCs, RT-qPCR of the hepatocyte genes, immunostaining of hepatocyte markers, and functional analyses were all performed. Compared with the other groups, hepatocyte-like cells which differentiated from BM‑MSC spheroids on extracellular matrix (ECM) exhibited more intensive staining of stored glycogen, an elevated level of urea biosynthesis and albumin secretion as well as the higher expression of hepatocyte-specific genes. Our results indicated that DLSs combined with spheroidal aggregate culture may be used as an effective method to facilitate the hepatic maturation of BM-MSCs and may have future applications in stem cell-based liver regenerative medicine.


Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice.

  • Xiujuan Wu‎ et al.
  • PloS one‎
  • 2015‎

Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP's role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP's role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.


Construction of a general albumin promoter reporter system for real-time monitoring of the differentiation status of functional hepatocytes from stem cells in mouse, rat and human.

  • Jing Tang‎ et al.
  • Biomedical reports‎
  • 2017‎

Genetic constructs with promoters fused to reporter genes for simultaneous monitoring of cellular events have been the focus of attention in recent years. Adenoviral vectors, which have distinctive characteristics, have been used to monitor the differentiation of stem cells in vitro. In the present study, a modified adenoviral vector was constructed, containing a mouse, rat, and human general albumin promoter sequence fused to a ZsGreen reporter gene, and evaluated its efficiency in different cell types. Two hepatocyte cell lines (Hepa1-6 and HepG2), rat primary hepatocytes, rat bone marrow mesenchymal stem cells (BM-MSCs) and rat BM-MSCs-derived hepatocyte-like cells were transduced with this vector, and the transfection efficiency and functional capabilities of the promoter were evaluated by fluorescent microscopy. The results demonstrated efficient expression of ZsGreen in Hepa1-6 cells, HepG2 cells, rat primary hepatocytes, and rat BM-MSCs-derived hepatocyte-like cells, but not in rat BM-MSCs. In conclusion, the current study demonstrates a simple, high-efficiency, general tool for real-time monitoring of the differentiation status of hepatocytes from stem cells in mice, rats, and humans. This tool may be useful for evaluating different protocols to generate functional hepatocytes from stem cells in multiple species.


Gene gun bombardment with DNA-coated golden particles enhanced the protective effect of a DNA vaccine based on thioredoxin glutathione reductase of Schistosoma japonicum.

  • Yan Cao‎ et al.
  • BioMed research international‎
  • 2013‎

Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR) plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN- γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83-38.83% (P < 0.01) of worm reduction and 40.38-44.51% (P < 0.01) of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.


Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency.

  • Jonathan Frew‎ et al.
  • Molecular neurodegeneration‎
  • 2020‎

Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD.


Prognostic and predictive value of monocarboxylate transporter 4 in patients with breast cancer.

  • Sheng Xiao‎ et al.
  • Oncology letters‎
  • 2020‎

The Warburg effect explains the large amount of lactic acid that tumour cells produce to establish and maintain the acidic characteristics of the tumour microenvironment, which contributes to the migration, invasion and angiogenesis of tumour cells. Monocarboxylate transporter 4 (MCT-4) is a key marker of tumour glycolysis and lactic acid production; however, the role of MCT-4 in breast cancer remains unclear. In the present study, immunohistochemistry (IHC) was used to detect the expression levels of MCT-4 in tissue microarrays of 145 patients diagnosed with invasive ductal breast cancer. The IHC score was used to assess the intensity of staining and the proportion of positive cells. Western blotting and reverse transcription-quantitative PCR were also performed to detect the expression levels of MCT-4 in 30 pairs of breast cancer tissues and adjacent normal tissues. In vitro experiments (EdU incoporation and Cell Counting Kit-8) were performed to examine the role of MCT-4 in the breast cancer MCF-7 cell line. The results of the present study indicated that high MCT-4 expression was associated with pT status (P=0.018), oestrogen receptor (ER) status (P=0.001), progesterone receptor (PR) status (P=0.024), Ki67 index (P=0.043) and androgen receptor (AR) status (P=0.033). In addition, an association between MCT-4 expression and pathological grade was observed (P=0.030). Furthermore, univariate (P=0.027) and multivariate (P=0.001) survival analysis revealed that MCT-4 expression and lymph node involvement were significant independent predictors of breast cancer prognosis. In addition, silencing MCT-4 expression attenuated breast cancer cell viability. Therefore, MCT-4 may be used as a potential predictor of invasive breast cancer.


A Genome-wide CRISPR Screen Reveals a Role for the Non-canonical Nucleosome-Remodeling BAF Complex in Foxp3 Expression and Regulatory T Cell Function.

  • Chin-San Loo‎ et al.
  • Immunity‎
  • 2020‎

Regulatory T (Treg) cells play a pivotal role in suppressing auto-reactive T cells and maintaining immune homeostasis. Treg cell development and function are dependent on the transcription factor Foxp3. Here, we performed a genome-wide CRISPR loss-of-function screen to identify Foxp3 regulators in mouse primary Treg cells. Foxp3 regulators were enriched in genes encoding subunits of the SWI/SNF nucleosome-remodeling and SAGA chromatin-modifying complexes. Among the three SWI/SNF-related complexes, the Brd9-containing non-canonical (nc) BAF complex promoted Foxp3 expression, whereas the PBAF complex was repressive. Chemical-induced degradation of Brd9 led to reduced Foxp3 expression and reduced Treg cell function in vitro. Brd9 ablation compromised Treg cell function in inflammatory disease and tumor immunity in vivo. Furthermore, Brd9 promoted Foxp3 binding and expression of a subset of Foxp3 target genes. Our findings provide an unbiased analysis of the genetic networks regulating Foxp3 and reveal ncBAF as a target for therapeutic manipulation of Treg cell function.


MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker.

  • Xiang Jin‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Breast cancer (BCa) is the most common malignancy threatening the health of women worldwide, and the incidence rate has significantly increased in the last 10 years. Mammalian STE20‑like protein kinase 1 (MST1) is involved in the development of various types of malignant tumor. The present study aimed to investigate the role of MST1 in BCa and its potential involvement in the poor prognosis of patients with BCa. Reverse transcription‑quantitative PCR and immunohistochemistry were used to analyze the expression levels of MST1 in BCa, and the clinicopathological characteristics and prognosis of patients with BCa were further analyzed by statistical analysis. MST1 was overexpressed in BCa cell lines (MCF‑7, MDA‑MB‑231 and SKBR3). Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and flow cytometry assays were used to analyze cell proliferation and apoptosis, respectively, and a wound healing assay was used to analyze cell migration. The results of the present study revealed that the downregulated expression levels of MST1 in BCa were closely associated with the poor prognosis of patients, and MST1 may be an independent risk factor for BCa. The overexpression of MST1 significantly inhibited the proliferation and migration, and promoted the apoptosis of BCa cells. In addition, the overexpression of MST1 significantly activated the Hippo signaling pathway. Treatment with XMU‑MP‑1 downregulated the expression levels of MST1 and partially reversed the inhibitory effects of MST1 on proliferation, migration and apoptosis‑related proteins, and inhibited the Hippo signaling pathway. In conclusion, the results of the present study suggested that MST1 expression levels may be downregulated in BCa and closely associated with tumor size and clinical stage, as well as the poor prognosis of affected patients. Furthermore, MST1 may inhibit the progression of BCa by targeting the Hippo signaling pathway.


Perfusable Vessel-on-a-Chip for Antiangiogenic Drug Screening with Coaxial Bioprinting.

  • Zeming Gu‎ et al.
  • International journal of bioprinting‎
  • 2022‎

Vessel-on-a-chips, which can be used to study microscale fluid dynamics, tissue-level biological molecules delivery and intercellular communication under favorable three-dimensional (3D) extracellular matrix microenvironment, are increasingly gaining traction. However, not many of them can allow for long-term perfusion and easy observation of angiogenesis process. Since angiogenesis is necessary for the expansion of tumor, antiangiogenic drugs play a significant role in cancer treatment. In this study, we established an innovative and reliable antiangiogenic drug screening chip that was highly modularly integrated for long-term perfusion (up to 10 days depending on the hydrogel formula) and real-time monitoring. To maintain an unobstructed flow of cell-laden tubes for subsequent perfusion culture on the premise of excellent bioactivities, a polycaprolactone stent inspired by coronary artery stents was introduced to hold up the tubular lumen from the inside, while the perfusion chip was also elaborately designed to allow for convenient observation. After 3 days of perfusion screening, distinct differences in human umbilical vein endothelial cell sprouting were observed for a gradient of concentrations of bevacizumab, which pointed to the effectiveness and reliability of the drug screening perfusion system. Overall, a perfusion system for antiangiogenic drug screening was developed, which can not only conduct drug evaluation, but also be potentially useful in other vessel-mimicking scenarios in the area of tissue engineering, drug screening, pharmacokinetics, and regenerative medicine.


ENPP1 ameliorates vascular calcification via inhibiting the osteogenic transformation of VSMCs and generating PPi.

  • Xiujuan Wu‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2023‎

This study aims to investigate the impact of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) on vascular calcification in rats. The rationale behind studying ENPP1's role in vascular calcification lies in its potential to modulate calcification processes. Understanding this relationship can offer insights into novel therapeutic avenues for addressing vascular calcification-related disorders. In this experiment, vascular smooth muscle cell (VSMC) calcification was induced using β-glycerophosphoric acid. Subsequently, recombinant AAV9-carrying ENPP1 was introduced into VSMCs to achieve both in vitro and in vivo overexpression of ENPP1. The findings indicate that ENPP1 overexpression significantly reduces calcium and phosphorus content in the aorta (P < 0.05). Alizarin red and von Kossa staining reveal notable reductions in calcium salt deposits in VSMCs and aorta, respectively. Notably, the expression levels of BMP-2, PINP, OC, and BALP were substantially decreased in VSMCs (P < 0.05), underscoring ENPP1's role in impeding osteoblast-like transdifferentiation of VSMCs. Additionally, ENPP1 overexpression led to a significant increase in pyrophosphate (PPi) levels compared to control rats (P < 0.05). In conclusion, this study suggests that ENPP1 contributes to alleviating vascular calcification by elevating PPi levels and inhibiting the phenotypic transformation of VSMCs. These findings shed light on the potential therapeutic role of ENPP1 in mitigating vascular calcification-related complications.


Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2.

  • Wei Miao‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

As a physiological small molecular product from the microbial fermentation of dietary fibers, butyrate plays an important role in maintaining intestinal health. Our previous works have proved that the effect of sodium butyrate (NaB) on the intestinal barrier function is mediated by activation of AMP-activated protein kinase (AMPK). However, the detailed pathway involved remains unknown. Using the calcium switch assay in the Caco-2 cell monolayer model, we found here that NaB activated AMPK mainly by increasing the calcium level, but not the ATP concentration, via promoting store-operated calcium entry (SOCE). Upon the activation of AMPK, NaB promoted the reassembly of tight junctions (TJs) based on reducing the phosphorylation of myosin II regulatory light chain (MLC2) at Ser19 and increasing phosphorylation of protein kinase C β2 (PKCβ2) at Ser660. Inhibiting (protein kinase C β) PKCβ blocked the reassembly of TJs induced by NaB in the barrier monolayer model. These results indicated that NaB could activate the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) pathway to mediate AMPK phosphorylating, which then inhibited the phosphorylation of MLC2 and promoted the phosphorylation of PKCβ2, respectively, so that the downstream molecules of AMPK coordinately contributed to the reassembly of TJs in the Caco-2 barrier model. These results suggested a potential mechanism of butyrate for intestine homeostasis and protection.


Platinum and Taxane Based Adjuvant and Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer: A Narrative Review.

  • Hao Tian‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Platinum (Pt) derivatives such as cisplatin and carboplatin are the class of drugs with proven activity against triple-negative breast cancer (TNBC). This is due to the ability of Pt compounds to interfere with the DNA repair mechanisms of the neoplastic cells. Taxanes have been efficacious against estrogen receptor-negative tumors and act by disruption of microtubule function. Due to their distinct mechanisms of action and routes of metabolism, the combination of the Pt agents and taxanes results in reduced systemic toxicity, which is ideal for treating TNBC. Also, the sensitivity of BRCA1-mutated cells to taxanes remains unsolved as in vitro evidence indicates resistance against taxanes due to BRCA1 mutations. Recent evidence suggests that the combination of carboplatin and paclitaxel resulted in better pathological complete response (pCR) in patients with TNBC, both in neoadjuvant and adjuvant settings. In vitro studies showed sequential dependency and optimal time scheduling of Pt- and taxane-based chemotherapy. Also, combining carboplatin with docetaxel in the NAC regimen yields an excellent pCR in patients with BRCA-associated and wild-type TNBC. TNBC is a therapeutic challenge that can be tackled by identifying new therapeutic sub-targets and specific cross-sections that can be benefitted from the addition of Pt- and taxane-based chemotherapy. This review summarizes the merits as well as the mechanism of Pt- and taxane-based adjuvant and neoadjuvant chemotherapies in early TNBC from the available and ongoing clinical studies.


Associations between ERAP1 Gene Polymorphisms and Psoriasis Susceptibility: A Meta-Analysis of Case-Control Studies.

  • Xiujuan Wu‎ et al.
  • BioMed research international‎
  • 2021‎

This study is to investigate the relationship of endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms with psoriasis. Five databases of PubMed, China National Knowledge Infrastructure (CNKI), Embase, Web of Science, and Cochrane Library were searched for potential studies until 25 December 2019. Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of included studies. Meta-analysis was performed with PRISMA. A total of 9 case-control studies including 4858 psoriasis cases and 10,542 healthy controls were included. Three loci of ERAP1 gene polymorphisms (rs26653, rs30187, and rs27524) were evaluated in this meta-analysis. There was no significant association between rs26653 polymorphism and risk of psoriasis (C vs. G, OR = 1.01, 95% CI: 0.80-1.28, P = 0.93). However, there was a significant association between rs30187 polymorphisms and psoriasis susceptibility (T vs. C, OR = 1.23, 95% CI: 1.15-1.32, P < 0.00001) and a significant association between rs27524 polymorphisms and psoriasis susceptibility (A vs. G, OR = 1.17, 95% CI: 1.09-1.25, P < 0.00001). For there were insufficient data of rs27044, rs151823, rs2248374, and rs2910686, we only conducted a systematic review for them. The rs30187 (C/T) and rs27524 (G/A) polymorphisms of ERAP1 are associated with increased risk of psoriasis. However, no significant association is observed between rs26653 (G/C) polymorphism and risk of psoriasis.


Effect of Long-Term Sodium Salicylate Administration on Learning, Memory, and Neurogenesis in the Rat Hippocampus.

  • Haichen Niu‎ et al.
  • BioMed research international‎
  • 2018‎

Tinnitus is thought to be caused by damage to the auditory and nonauditory system due to exposure to loud noise, aging, or other etiologies. However, at present, the exact neurophysiological basis of chronic tinnitus remains unknown. To explore whether the function of the limbic system is disturbed in tinnitus, the hippocampus was selected, which plays a vital role in learning and memory. The hippocampal function was examined with a learning and memory procedure. For this purpose, sodium salicylate (NaSal) was used to create a rat animal model of tinnitus, evaluated with prepulse inhibition behavior (PPI). The acquisition and retrieval abilities of spatial memory were measured using the Morris water maze (MWM) in NaSal-treated and control animals, followed by observation of c-Fos and delta-FosB protein expression in the hippocampal field by immunohistochemistry. To further identify the neural substrate for memory change in tinnitus, neurogenesis in the subgranular zone of the dentate gyrus (DG) was compared between the NaSal group and the control group. The results showed that acquisition and retrieval of spatial memory were impaired by NaSal treatment. The expression of c-Fos and delta-FosB protein was also inhibited in NaSal-treated animals. Simultaneously, neurogenesis in the DG was also impaired in tinnitus animals. In general, our data suggest that the hippocampal system (limbic system) may play a key role in tinnitus pathology.


Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson's disease.

  • Haichen Niu‎ et al.
  • Translational neurodegeneration‎
  • 2018‎

Parkinson's disease (PD) is a neurodegenerative disease characterized by intraneuronal Lewy Body (LB) aggregates composed of misfolded alpha-synuclein (α-syn). The spread of misfolded α-syn follows a typical pattern: starting in the olfactory bulb (OB) and the gut, this pathology is followed by the progressive invasion of misfolded α-syn to the posterior part of the brain. It is unknown whether the administration of human mutant alpha-synuclein (hm-α-syn, a human mutation which occurs in familial PD) into the OB of rats would trigger similar α-syn propagation and subsequently cause pathological changes in broader brain fields associated to PD and establish an animal model of prodromal PD.


Precise Printing of Microfiber Scaffold with Gelatin Methacryloyl (GelMA)/Polyethylene Oxide (PEO) Bioink.

  • Haibing Li‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2023‎

Gelatin methacryloyl scaffolds with microscale fiber structures own great significance because they can effectively mimic the extracellular matrix environment. Compared with extruding bioprinting, electrospinning technology is more suitable for establishing accurate hydrogel microfibers. However, electrospinning accurate gelatin methacryloyl microfiber remains a big challenge restricted by its bad spinnability. In this paper, polyethylene oxide, which owns promising spinnability, is added into gelatin methacryloyl hydrogel precursor to improve the spinnability of gelatin methacryloyl bioink. A three-dimensional motion platform for electrospinning is designed and built and the spinning process of microfibers under far-electric-field and near-electric-field conditions is systematically studied, respectively. As a result, scaffolds consisted of unordered and ordered microfibers are successfully fabricated under far-electric-field and near-electric field, respectively. In vitro culture experiments of human umbilical vein endothelial cells are carried out using the prepared gelatin methacryloyl microfiber scaffolds. The results show that the cells can easily attach to the microfibers and grow well. Moreover, the gelatin methacryloyl/ polyethylene oxide microfiber scaffold was directly spun on the polycaprolactone mesh scaffold printed by fused modeling printing method. The results showed that the macroscopic ordered and microscopic disordered microfiber scaffold could be successfully established, which could lead to directed cell growth. We believe that this method can effectively solve the problem of hydrogel spinnability and be a powerful tool for various biomedical engineering methods in the future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: