Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 129 papers

Enhanced itch elicited by capsaicin in a chronic itch model.

  • Guang Yu‎ et al.
  • Molecular pain‎
  • 2016‎

Chronic itch (pruritus) is an important clinical problem. However, the underlying molecular basis has yet to be understood. The Transient Receptor Potential Vanilloid 1 channel is a heat-sensitive cation channel expressed in primary sensory neurons and involved in both thermosensation and pain, but its role in chronic itch remains elusive. Here, we for the first time revealed an increased innervation density of Transient Receptor Potential Vanilloid 1-expressing sensory fibers in the skin afflicted with chronic itch. Further analysis indicated that this phenomenon is due to an expansion of Transient Receptor Potential Vanilloid 1-expressing sensory neurons under chronic itch conditions. As a functional correlates of this neuronal expansion, we observed an enhanced neuronal responsiveness to capsaicin under the dry skin conditions. Importantly, the neuronal hypersensitivity to capsaicin results in itch, rather than pain sensation, suggesting that the up-regulated Transient Receptor Potential Vanilloid 1 underlies the pain-to-itch switch under chronic itchy conditions. The study shows that there are different mechanisms of chronic pain and itching, and Transient Receptor Potential Vanilloid 1 plays an important role in chronic itch.


The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations.

  • Francesca Menghi‎ et al.
  • Cancer cell‎
  • 2018‎

The tandem duplicator phenotype (TDP) is a genome-wide instability configuration primarily observed in breast, ovarian, and endometrial carcinomas. Here, we stratify TDP tumors by classifying their tandem duplications (TDs) into three span intervals, with modal values of 11 kb, 231 kb, and 1.7 Mb, respectively. TDPs with ∼11 kb TDs feature loss of TP53 and BRCA1. TDPs with ∼231 kb and ∼1.7 Mb TDs associate with CCNE1 pathway activation and CDK12 disruptions, respectively. We demonstrate that p53 and BRCA1 conjoint abrogation drives TDP induction by generating short-span TDP mammary tumors in genetically modified mice lacking them. Lastly, we show how TDs in TDP tumors disrupt heterogeneous combinations of tumor suppressors and chromatin topologically associating domains while duplicating oncogenes and super-enhancers.


Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, northwest China.

  • Hong-Xia Yu‎ et al.
  • TheScientificWorldJournal‎
  • 2013‎

Chinese pine (Pinus tabulaeformis Carr.) is widely planted for restoration in destroyed ecosystems of the Loess Plateau in China. Although soil microbial communities are important subsurface components of the terrestrial ecosystems, little is known about fungal and bacterial communities in the rhizosphere of planted and natural P. tabulaeformis forests in the region. In this study, fungal and bacterial communities in the rhizosphere of P. tabulaeformis were analyzed by nested PCR-DGGE (denaturing gradient gel electrophoresis). Diversity analysis revealed that the values of the Shannon-Wiener index (H) and the Simpson index (D) of fungal communities were higher in natural secondary forests than in plantations except for the 3-year-old site. Moreover, the values of species richness, H, and D of the bacterial communities were also higher in the former. Totally, 18 fungal and 19 bacterial DGGE band types were successfully retrieved and sequenced. The dominant fungi in the rhizosphere of P. tabulaeformis belonged to the phylum of Basidiomycota, while the dominant bacteria belonged to the phylum of Proteobacteria. Principal component analysis indicated that fungal and bacterial species were more unitary in plantations than in natural secondary forests, and the majority of them were more likely to appear in the latter. Correlation analysis showed no significant correlation between the fungal and bacterial community diversities.


Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma.

  • A Gordon Robertson‎ et al.
  • Cancer cell‎
  • 2017‎

Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermediate-risk clinical mutation subtypes.


COMPASS server for homology detection: improved statistical accuracy, speed and functionality.

  • Ruslan I Sadreyev‎ et al.
  • Nucleic acids research‎
  • 2009‎

COMPASS is a profile-based method for the detection of remote sequence similarity and the prediction of protein structure. Here we describe a recently improved public web server of COMPASS, http://prodata.swmed.edu/compass. The server features three major developments: (i) improved statistical accuracy; (ii) increased speed from parallel implementation; and (iii) new functional features facilitating structure prediction. These features include visualization tools that allow the user to quickly and effectively analyze specific local structural region predictions suggested by COMPASS alignments. As an application example, we describe the structural, evolutionary and functional analysis of a protein with unknown function that served as a target in the recent CASP8 (Critical Assessment of Techniques for Protein Structure Prediction round 8). URL: http://prodata.swmed.edu/compass.


POH1 deubiquitinates pro-interleukin-1β and restricts inflammasome activity.

  • Li Zhang‎ et al.
  • Nature communications‎
  • 2018‎

Inflammasome activation is essential for host defence against invading pathogens, but is also involved in various forms of inflammatory diseases. The processes that control inflammasome activity are thus important for averting excessive immune responses and tissue damage. Here we show that the deubiquitinase POH1 negatively regulates the immune response triggered by inflammasome activation. POH1 deficiency in macrophages enhances mature IL-1β production without significant alterations in inflammasome priming and ASC-caspase-1 activation. In WT macrophages, POH1 interacts with and deubiquitinates pro-IL-1β by decreasing the K63-linked polyubiquitin chains, as well as decreases the efficacy of pro-IL-1β cleavage. Furthermore, myeloid cell-specific deletion of POH1 aggravates lipopolysaccharide-induced systemic inflammation and alum-induced peritonitis inflammatory responses in vivo. Our study thereby reveals that POH1-mediated deubiquitination of pro-IL-1β is an important regulatory event that restrains inflammatory responses for the maintenance of immune homeostasis.


Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment.

  • Chen Chen‎ et al.
  • Nature communications‎
  • 2020‎

Much of the world's Li deposits occurs as basinal brines in magmatic orogens, particularly in continental volcanic arcs. However, the exact origin of Li enrichment in arc magmatic systems is not clear. Here, we show that, globally, primitive arc magmas have Li contents and Li/Y ratios similar to mid-ocean ridge basalts, indicating that the subducting slab has limited contribution to Li enrichment in arc magmas. Instead, we find that Li enrichment is enhanced by lower degrees of sub-arc mantle melting and higher extents of intracrustal differentiation. These enrichment effects are favored in arcs with thick crust, which explains why magmatism and differentiation in continental arcs, like the Andes, reach greater Li contents than their island arc counterparts. Weathering of these enriched source rocks mobilizes and transports such Li into the hydrologic system, ultimately developing Li brines with the combination of arid climate and the presence of landlocked extensional basins in thickened orogenic settings.


The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.

  • Claude Rispe‎ et al.
  • BMC biology‎
  • 2020‎

Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture.


Serum KIAA1199 is an advanced-stage prognostic biomarker and metastatic oncogene in cholangiocarcinoma.

  • Xiangyu Zhai‎ et al.
  • Aging‎
  • 2020‎

Cell proliferation and migration are the determinants of malignant tumor progression, and a better understanding of related genes will lead to the identification of new targets aimed at preventing the spread of cancer. Some studies have shown that KIAA1199 (CEMIP) is a transmembrane protein expressed in many types of noncancerous cells and cancer cells. However, the potential role of KIAA1199 in the progression of cholangiocarcinoma (CCA) remains unclear.


CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis.

  • Chaohua Liu‎ et al.
  • Theranostics‎
  • 2020‎

Background and Aim: DOT1L regulates various genes involved in cancer onset and progression by catalyzing H3K79 methylation, but how DOT1L activity itself is regulated is unclear. Here, we aimed to identify specific DOT1L post-translational modifications that might regulate DOT1L activity and thus impact on colorectal cancer (CRC) progression. Methods: We conducted affinity purification and mass spectrometry to explore DOT1L post-translational modifications. We then established transwell migration and invasion assays to specifically investigate the role of DOT1L(K358) acetylation on CRC cellular behavior in vitro and a bioluminescence imaging approach to determine the role of DOT1L(K358) acetylation in CRC metastasis in vivo. We performed chromatin immunoprecipitation to identify DOT1L acetylation-controlled target genes. Finally, we used immunohistochemical staining of human tissue arrays to examine the relevance of DOT1L(K358) acetylation in CRC progression and metastasis and the correlation between DOT1L acetylation and CBP. Results: We found that CBP mediates DOT1L K358 acetylation in human colon cancer cells and positively correlates with CRC stages. Mechanistically, DOT1L acetylation confers DOT1L stability by preventing the binding of RNF8 to DOT1L and subsequent proteasomal degradation, but does not affect its enzyme activity. Once stabilized, DOT1L can catalyze the H3K79 methylation of genes involved in epithelial-mesenchymal transition, including SNAIL and ZEB1. An acetylation mimic DOT1L mutant (Q358) could induce a cancer-like phenotype in vitro, characterized by metastasis and invasion. Finally, DOT1L(K358) acetylation correlated with CRC progression and a poor survival rate as well as with high CBP expression. Conclusions: DOT1L acetylation by CBP drives CRC progression and metastasis. Targeting DOT1L deacetylation signaling is a potential therapeutic strategy for DOT1L-driven cancers.


Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics.

  • Philippe Chouvarine‎ et al.
  • Cancers‎
  • 2021‎

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.


Targeting DNA methylation and demethylation in diabetic foot ulcers.

  • Jun-Yu Deng‎ et al.
  • Journal of advanced research‎
  • 2023‎

Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes.


Identification and Characterization of Circular RNAs Involved in the Flower Development and Senescence of Rhododendron delavayi Franch.

  • Xiaorong Xu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Floral development and senescence are a crucial determinant for economic and ornamental value. CircRNAs play an essential role in regulating plant growth and development; however, there is no systematic identification of circRNAs during the lifespan of flowers. This study aims to explore the expression profile and functional role of circRNAs in the full flowering stages of Rhododendron delavayi Franch. We carried out transcriptome sequencing of the six stages of Rhododendron delavayi Franch flowers to identify the circular RNA expression profile. In addition, using bioinformatics methods, we explored the functions of circRNAs, including analysis of the circRNA-miRNA-mRNA network, short time-series expression miner (STEM), and so on. We identified 146 circRNAs, of which 79 were differentially expressed from the budding to fading stages. Furthermore, using STEM analysis, one of the 42 circRNA expression model profiles was significantly upregulated during the senescence stage, including 16 circRNAs. Additionally, 7 circRNA-miRNA-mRNA networks were constructed with 10 differentially expressed circRNAs, in which some target mRNA may regulate the development and senescence of the Rhododendron flowers. Finally, by analyzing the correlation between circRNAs and mRNA, combined with existing reports, we proposed that circRNAs play a regulatory role during flower development and senescence by mediating the jasmonate signaling pathway. Overall, these results provide new clues to the potential mechanism of circRNAs acting as novel post-transcriptional regulators in the development and senescence process of flowers.


Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton.

  • Guozheng Sun‎ et al.
  • Nature communications‎
  • 2021‎

Constraining thickness and geothermal gradient of Archean continental crust are crucial to understanding geodynamic regimes of the early Earth. Archean crust-sourced tonalitic-trondhjemitic-granodioritic gneisses are ideal lithologies for reconstructing the thermal state of early continental crust. Integrating experimental results with petrochemical data from the Eastern Block of the North China Craton allows us to establish temporal-spatial variations in thickness, geothermal gradient and basal heat flow across the block, which we relate to cooling mantle potential temperature and resultant changing geodynamic regimes from vertical tectonics in the late Mesoarchean (~2.9 Ga) to plate tectonics with hot subduction in the early to late Neoarchean (~2.7-2.5 Ga). Here, we show the transition to a plate tectonic regime plays an important role in the rapid cooling of the mantle, and thickening and strengthening of the lithosphere, which in turn prompted stabilization of the cratonic lithosphere at the end of the Archean.


Chalcone Isomerase a Key Enzyme for Anthocyanin Biosynthesis in Ophiorrhiza japonica.

  • Wei Sun‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Anthocyanins are distributed ubiquitously to terrestrial plants and chalcone isomerase (CHI) catalyzes the stereospecific isomerization of chalcones - a committed step in the anthocyanin biosynthesis pathway. In this study, one gene encoding CHI was isolated from Ophiorrhiza japonica and designated as OjCHI. Multiple sequence alignments and phylogenetic analysis revealed that OjCHI had the conserved CHI active site residues and was classified into type I CHI group. In order to better understand the mechanisms of anthocyanin synthesis in O. japonica, integrative analysis between metabolites and OjCHI expression was conducted. The results showed OjCHI expression matched the accumulation patterns of anthocyanins not only in different tissues but also during the flower developmental stages, suggesting the potential roles of OjCHI in the biosynthesis of anthocyanin. Then biochemical analysis indicated that recombinant OjCHI protein exhibited a typical type I CHI activity which catalyzed the production of naringenin from naringenin chalcone. Moreover, expressing OjCHI in Arabidopsis tt5 mutant restored the anthocyanins and flavonols phenotype of hypocotyl, cotyledon and seed coat, indicating its function as a chalcone isomerase in vivo. In summary, our findings reveal the in vitro as well as in vivo functions of OjCHI and provide a resource to understand the mechanism of anthocyanin biosynthesis in O. japonica.


Risk Factors and Pathogen Spectrum in Continuous Ambulatory Peritoneal Dialysis-Associated Peritonitis: A Single Center Retrospective Study.

  • Supei Yin‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2022‎

BACKGROUND To investigate the incidence, risk factors, pathogen distribution, and drug resistance patterns in continuous ambulatory peritoneal dialysis-associated peritonitis (CAPDP). MATERIAL AND METHODS Clinical data for 248 patients who underwent continuous ambulatory peritoneal dialysis (CAPD) treatment in a single center in China from March 2018 to January 2021 were retrospectively collected. The patients were divided into the CAPDP group (n=40) and the non-CAPDP group (n=208) according to whether peritonitis occurred. The incidence rate, risk factors, bacterial distribution, and drug sensitivity of CAPDP were analyzed. RESULTS The incidence of CAPDP was 16.13%, and 87.5% of patients with CAPDP continued CAPDP treatment after anti-infection treatment. Patients with and without CAPDP were clearly distinguished, on the basis of their clinical characteristics, by using principal component analysis (PCA) methods. Logistic regression analysis found that body mass index (BMI; P=0.0095), albumin (P=0.016), albumin/globulin ratio (P=0.018), C-reactive protein (P=0.0001), and rapid transport (P=0.034) were independent risk factors for CAPDP. The main pathogens causing the CAPDP were Staphylococcus epidermidis (50.00%), Staphylococcus capitis (13.33%), and Escherichia coli (10.00%). Among the pathogenic bacteria, the main drugs to which gram-negative cocci were sensitive were imipenem, meropenem, piperacillin/tazobactam, cefoperazone/sulbactam, ceftazidime, and tigecycline. The main drugs to which gram-positive cocci were sensitive were vancomycin, teicoplanin, and linezolid. The drug resistance rate of pathogenic bacteria to penicillin G, ampicillin, compound trimethoprim, cefepime, ceftriaxone, and amoxicillin-clavulanic acid drugs was 36.26-100%. CONCLUSIONS BMI, albumin, albumin/globulin ratio, C-reactive protein, and rapid transport are independent risk factors for CAPDP. Gram-positive bacteria are the main pathogens of CAPDP and are sensitive to vancomycin, teicoplanin, and linezolid.


NUSAP1, a novel stemness-related protein, promotes early recurrence of hepatocellular carcinoma.

  • Jinying Li‎ et al.
  • Cancer science‎
  • 2022‎

Early recurrence (within 2 years after resection) is the primary cause of poor outcomes among hepatocellular carcinoma (HCC) patients, and liver cancer stem cells are the main contributors to postsurgical HCC recurrence. Nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in tumor progression. We investigated the function and clinical value of NUSAP1 in early recurrence of HCC. Data from public datasets and our cohort were used to assess the association between NUSAP1 expression and early HCC recurrence. Gain- and loss-of-function experiments were carried out in vivo and in vitro. The predictive effect of NUSAP1 on early HCC recurrence was further evaluated by a validation cohort. We found that elevated NUSAP1 expression in HCC specimens was correlated with poor outcome, especially in cases with postoperative early recurrence. Functional studies indicated that NUSAP1 significantly promotes HCC progression. A postsurgical recurrence murine model further revealed that upregulated NUSAP1 dramatically increased the likelihood of HCC early recurrence. RNA sequencing data revealed that the gene sets of cancer stemness and the signal transducer and activator of transcription 3 (STAT3) pathway were enriched by NUSAP1 overexpression. Mechanistically, NUSAP1 enhanced cancer stemness through stimulating STAT3 nuclear translocation and activation through receptor of activated protein C kinase 1 (RACK1). In a validation cohort with 112 HCC patients, NUSAP1 effectively predicted HCC early recurrence. Our results indicated that NUSAP1 promotes early recurrence of HCC by sustaining cancer stemness and could serve as a valuable predictive indicator for postsurgical intervention in HCC patients.


Using different machine learning models to classify patients into mild and severe cases of COVID-19 based on multivariate blood testing.

  • Rui-Kun Zhang‎ et al.
  • Journal of medical virology‎
  • 2022‎

COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.


The complete chloroplast genome sequence of Styrax wuyuanensis S. M. Hwang (Styracaceae) from Jiangxi Province, China.

  • Rui Zhang‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Styrax wuyuanensis S. M. Hwang is an endemic species distributed in China. In this study, we characterized its complete chloroplast genome. The circular genome of S. wuyuanensis is 157,969 bp in length, and includes two inverted repeat (IRa and IRb) regions of 25,954 bp in length separated by a large single copy (LSC) region of 87,575 bp and a small single copy (SSC) region of 18,486 bp. The total GC content of the S. wuyuanensis chloroplast genome is 37.0%, and a total of 132 functional genes are encoded, including 87 protein-coding genes, 37 tRNA, and eight rRNA. The phylogenetic analysis has shown that S. wuyuanensis is positioned in the Styracaceae clade, as a sister taxon to S. faberi and S. fortunei, confirming the close relationship of S. wuyuanensis with the latter two species.


GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival.

  • Xiaopeng Lu‎ et al.
  • Nucleic acids research‎
  • 2019‎

The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: