Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Acute Recreational Noise-Induced Cochlear Synaptic Dysfunction in Humans With Normal Hearing: A Prospective Cohort Study.

  • Qixuan Wang‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

The objective of the study was to identify the acute high-intensity recreational noise-induced effects on auditory function, especially the cochlear synaptopathy-related audiological metrics, in humans with normal hearing.


Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure.

  • Minfei Qian‎ et al.
  • Neural plasticity‎
  • 2021‎

It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.


An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs.

  • Zhongying Wang‎ et al.
  • Neural plasticity‎
  • 2020‎

The prestin-based active process in the mammalian outer hair cells (OHCs) is believed to play a crucial role in auditory signal amplification in the cochlea. Prestin belongs to an anion transporter family (SLC26A). It is densely expressed in the OHC lateral plasma membrane and functions as a voltage-dependent motor protein. Analog genes can be found in the genome of nonmammalian species, but their functions in hearing are poorly understood. In the present study, we used the gerbil prestin sequence as a template and identified an analog gene in the bullfrog genome. We expressed the gene in a stable cell line (HEK293T) and performed patch-clamp recording. We found that these cells exhibited prominent nonlinear capacitance (NLC), a widely accepted assay for prestin functioning as a motor protein. Upon close examination, the key parameters of this NLC are comparable to that conferred by the gerbil prestin, and nontransfected cells failed to display NLC. Lastly, we performed patch-clamp recording in HCs of all three hearing organs in bullfrog. HCs in both the sacculus and the amphibian papilla exhibited a capacitance profile that is similar to NLC while HCs in the basilar papilla showed no sign of NLC. Whether or not this NLC-like capacitance change is involved in auditory signal amplification certainly requires further examination; our results represent the first and necessary step in revealing possible roles of prestin in the active hearing processes found in many nonmammalian species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: