Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,447 papers

Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-β signaling.

  • Wenfang Tian‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2016‎

Fibrosis following injury is a common adaptive response in the liver, which can lead to irreparable and life-threatening cirrhosis and hepatocellular carcinoma without effectual intervention. The molecular mechanisms underlying fibrogenic response in the liver remains poorly understood. Here we report that mice with deficiency in myocardin-related transcription factor A (MRTF-A) showed resistance to thioacetamide (TAA)-induced liver fibrosis with significantly reduced expression of pro-fibrogenic genes when compared to wild type littermates. Over-expression of MRTF-A enhanced whereas depletion of MRTF-A alleviated pro-fibrogenic transcription induced by TGF-β, a major pro-fibrogenic factor in hepatic stellate cells (HSCs). Mechanistically, MRTF-A silencing in HSCs impacted the chromatin structure by reducing the deposition of methylated histone H3K4 on the promoters of pro-fibrogenic genes. Further analyses revealed that MRTF-A interacted with and recruited several key epigenetic factors involved in H3K4 methylation, including ASH2, WDR5, and SET1, to the promoters of pro-fibrogenic genes in response to TGF-β treatment. Over-expression of ASH2, WDR5, or SET1 enhanced the transactivation of pro-fibrogenic gene promoters by TGF-β in an MRTF-A-dependent manner. In conclusion, MRTF-A regulates liver fibrosis by epigenetically tuning the TGF-β signaling pathway in HSCs.


Transcriptome sequencing identified hub genes for hepatocellular carcinoma by weighted-gene co-expression analysis.

  • Qi Pan‎ et al.
  • Oncotarget‎
  • 2016‎

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it remains a challenge to understand the genetic mechanisms underlying hepatocarcinogenesis. A global gene network of differential expression profiles in HCC has yet to be fully characterized. In the present study, we performed transcriptome sequencing (mRNA and lncRNA) in liver cancer and cirrhotic tissues of nine HCC patients. We identified differentially expressed genes (DEGs) and constructed a weighted gene co-expression network for the DEGs. In total, 755 DEGs (747 mRNA and eight lncRNA) were identified, and several co-expression modules were significantly associated with HCC clinical traits, including tumor location, tumor grade, and the α-fetoprotein (AFP) level. Of note, we identified 15 hub genes in the module associated with AFP level, and three (SPX, AFP and ADGRE1) of four hub genes were validated in an independent HCC cohort (n=78). Identification of hub genes for HCC clinical traits has implications for further understanding of the molecular genetic basis of HCC.


Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of Parkinson's disease.

  • Xiwen Geng‎ et al.
  • Behavioural brain research‎
  • 2016‎

The pedunculopontine nucleus (PPN) is a new deep brain stimulation target for treating Parkinson's disease (PD). But the alterations of the PPN electrophysiological activities in PD are still debated. To investigate these potential alterations, extracellular single unit and local field potential (LFP) activities in the PPN were recorded in unilateral hemispheric 6-hydroxydopamine (6-OHDA) lesioned rats and in control rats, respectively. The spike activity results revealed two types of neurons (Type I and Type II) with distinct electrophysiological characteristics in the PPN. Both types of neurons had increased firing rate and changed firing pattern in lesioned rats when compared to control rats. Specifically, Type II neurons showed an increased firing rate when the rat state was switched from rest to locomotion. The LFP results demonstrated that lesioned rats had lower LFP power at 0.7-12Hz and higher power at 12-30Hz than did control animals in either resting or locomotor state. These findings provide a better understanding of the effects of 6-OHDA lesion on neuronal activities in the PPN and also provide a proof of the link between this structure and locomotion, which contributes to better understanding the mechanisms of the PPN functioning in the pathophysiology of PD.


The Psychometric Evaluation of the Connor-Davidson Resilience Scale Using a Chinese Military Sample.

  • Yuanjun Xie‎ et al.
  • PloS one‎
  • 2016‎

This study examined the psychometric properties of the Connor-Davidson Resilience Scale (CD-RISC) with a Chinese military population with the aim of finding a suitable instrument to quantify resilience in Chinese military service members. The confirmatory factor analysis results did not support the factorial structure of the original or the Chinese community version of the CD-RISC, but the exploratory factor analysis results revealed a three-factor model (composed of Competency, Toughness, and Adaptability) that seemed to fit. Moreover, the repeat confirmatory factory analysis replicated the three-factor model. Additionally, the CD-RISC with a Chinese military sample exhibited appropriate psychometric properties, including internal consistency, test-retest reliability, and structural and concurrent validity. The revised CD-RISC with a Chinese military sample provides insight into the resilience measurement framework and could be a reliable and valid measurement for evaluating resilience in a Chinese military population.


Relationship between fasting glucose levels and in-hospital mortality in Chinese patients with acute myocardial infarction and diabetes mellitus: a retrospective cohort study.

  • Hao Liang‎ et al.
  • BMC cardiovascular disorders‎
  • 2016‎

Previous studies have demonstrated that elevated admission and fasting glucose (FG) is associated with worse outcomes in patients with acute myocardial infarction (AMI). However, the quantitative relationship between FG levels and in-hospital mortality in patients with AMI remains unknown. The aim of the study is to assess the prevalence of elevated FG levels in hospitalized Chinese patients with AMI and diabetes mellitus and to determine the quantitative relationship between FG levels and the in-hospital mortality as well as the optimal level of FG in patients with AMI and diabetes mellitus.


Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling.

  • Wen-Sheng Wang‎ et al.
  • Journal of experimental botany‎
  • 2016‎

To understand the physiological and molecular mechanisms underlying seedling salt tolerance in rice (Oryza sativa L.), the phenotypic, metabolic, and transcriptome responses of two related rice genotypes, IR64 and PL177, with contrasting salt tolerance were characterized under salt stress and salt+abscisic acid (ABA) conditions. PL177 showed significantly less salt damage, lower Na(+)/K(+) ratios in shoots, and Na(+) translocation from roots to shoots, attributed largely to better salt exclusion from its roots and salt compartmentation of its shoots. Exogenous ABA was able to enhance the salt tolerance of IR64 by selectively decreasing accumulation of Na(+) in its roots and increasing K(+) in its shoots. Salt stress induced general and organ-specific increases of many primary metabolites in both rice genotypes, with strong accumulation of several sugars plus proline in shoots and allantoin in roots. This was due primarily to ABA-mediated repression of genes for degradation of these metabolites under salt. In PL177, salt specifically up-regulated genes involved in several pathways underlying salt tolerance, including ABA-mediated cellular lipid and fatty acid metabolic processes and cytoplasmic transport, sequestration by vacuoles, detoxification and cell-wall remodeling in shoots, and oxidation-reduction reactions in roots. Combined genetic and transcriptomic evidence shortlisted relatively few candidate genes for improved salt tolerance in PL177.


Functional characteristics of the Staphylococcus aureus δ-toxin allelic variant G10S.

  • Gordon Y C Cheung‎ et al.
  • Scientific reports‎
  • 2015‎

Staphylococcus aureus δ-toxin is a member of the phenol-soluble modulin (PSM) peptide family. PSMs have multiple functions in staphylococcal pathogenesis; for example, they lyse red and white blood cells and trigger inflammatory responses. Compared to other PSMs, δ-toxin is usually more strongly expressed but has only moderate cytolytic capacities. The amino acid sequences of S. aureus PSMs are well conserved with two exceptions, one of which is the δ-toxin allelic variant G10S. This variant is a characteristic of the subspecies S. argenteus and S. aureus sequence types ST1 and ST59, the latter representing the most frequent cause of community-associated infections in Asia. δ-toxin G10S and strains expressing that variant from plasmids or the genome had significantly reduced cytolytic and pro-inflammatory capacities, including in a strain background with pronounced production of other PSMs. However, in murine infection models, isogenic strains expressing the two δ-toxin variants did not cause measurable differences in disease severity. Our findings indicate that the widespread G10S allelic variation of the δ-toxin locus has a significant impact on key pathogenesis mechanisms, but more potent members of the PSM peptide family may overshadow that impact in vivo.


Cerebral oxygen saturation after multiple perioperative influential factors predicts the occurrence of postoperative cognitive dysfunction.

  • Cheng Ni‎ et al.
  • BMC anesthesiology‎
  • 2015‎

Postoperative cognitive dysfunction (POCD) is a frequent complication in elderly patients undergoing major non-cardiac surgery, but its etiology is still unclear. Cerebral oxygen saturation (ScO2) represents the balance of cerebral oxygen supply and demand. The aim of present study was to evaluate the relationship between perioperative ScO2 and POCD, and to verify the hypothesis that the value of ScO2 after multiple perioperative influential factors could predict POCD in elderly patients undergoing total knee arthroplasty (TKA).


Oncogenic miR-9 is a target of erlotinib in NSCLCs.

  • Xi Chen‎ et al.
  • Scientific reports‎
  • 2015‎

EGFR-targeted cancer therapy is a breakthrough in non-small cell carcinoma. miRNAs have been proved to play important roles in cancer. Currently, for the role of miRNAs in EGFR-targeted cancer therapy is unclear. In this study, first we found that erlotinib reduced the expression of miR-9. MiR-9 expression was increased in human lung cancer tissues compared with peripheral normal tissues, and miR-9 promoted the growth of NSCLC cells. Overexpression of miR-9 decreased the growth inhibitory effect of erlotinib. Second, miR-9 decreased FoxO1 expression by directly inhibition of its mRNA translation. Adenovirus-mediated overexpression of FoxO1 or siRNA-mediated downregulation of FoxO1 negatively regulated cell growth. And exogenous overexpression FoxO1 reduced the pro-growth effect of miR-9. Finally, we found that erlotinib upregulated FoxO1 protein expression. Moreover, overexpression of miR-9 decreased erlotinib-induced FoxO1 expression, and overexpression of FoxO1 enhanced the growth inhibitory effects of erlotinib. Additionally, we found that erlotinib downregulates miR-9 expression through suppressing the transcrption of miR-9-1 and enhanced DNA methylation maybe involved. These findings suggest that oncogenic miR-9 targeted FoxO1 to promote cell growth, and downregulation of this axis was involved in erlotinib's growth inhibitory effects. Clarifying the regulation of miRNAs by erlotinib may indicate novel strategies for enhancing EGFR-targeted cancer therapy.


Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming.

  • Jun Chen‎ et al.
  • Cell reports‎
  • 2016‎

The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.


Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR.

  • Lu Luan‎ et al.
  • Scientific reports‎
  • 2016‎

The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources.


Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils.

  • Lin Li‎ et al.
  • Scientific reports‎
  • 2016‎

Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1-3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca(2+) influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target.


CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis.

  • Xiaoyan Xin‎ et al.
  • Scientific reports‎
  • 2016‎

CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) plays an important role in tumor progression and a number of studies have suggested that it is an indicator of tumor prognosis. This current meta-analysis systematically reevaluated the predictive potential of CD147/EMMPRIN in various cancers. We searched PubMed and Embase databases to screen the literature. Fixed-effect and random-effect meta-analytical techniques were used to correlate CD147 expression with outcome measures. A total of 53 studies that included 68 datasets were eligible for inclusion in the final analysis. We found a significant association between CD147/EMMPRIN overexpression and adverse tumor outcomes, such as overall survival, disease-specific survival, progression-free survival, metastasis-free survival or recurrence-free survival, irrespective of the model analysis. In addition, CD147/EMMPRIN overexpression predicted a high risk for chemotherapy drugs resistance. CD147/EMMPRIN is a central player in tumor progression and predicts a poor prognosis, including in patients who have received chemo-radiotherapy. Our results provide the evidence that CD147/EMMPRIN could be a potential therapeutic target for cancers.


Impact of siRNA targeting of β-catenin on differentiation of rat neural stem cells and gene expression of Ngn1 and BMP4 following in vitro hypoxic-ischemic brain damage.

  • Xiaoying Zhang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present study was to investigate the possible damage-repair mechanisms of neural stem cells (NSCs) following hypoxic-ischemic brain damage (HIBD). NSCs obtained from Sprague Dawley rats were treated with tissue homogenate from normal or HIBD tissue, and β‑catenin expression was silenced using siRNA. The differentiation of NSCs was observed by immunofluorescence, and semiquantitative reverse transcription‑polymerase chain reaction and western blot analysis were applied to detect the mRNA and protein expression levels of Ngn1 and BMP4 in the NSCs. Compared with control NSCs, culture with brain tissue homogenate significantly increased the differentiation of NSCs into neurons and oligodendrocytes (P<0.05), whereas differentiation into astrocytes was significantly reduced (P<0.05). Compared with negative control‑transfected cells, knockdown of β‑catenin expression significantly decreased the differentiation of NSCs into neurons and oligodendrocytes (P<0.01), whereas the percentage of NSCs differentiated into astrocytes was significantly increased (P<0.01). Compared with control NSCs, the mRNA and protein expression levels of Ngn1 were significantly increased (P<0.01) and BMP4 levels were significantly reduced (P<0.01) by exposure of the cells to brain tissue homogenate. Compared with the negative control plasmid‑transfected NSCs, the levels of Ngn1 mRNA and protein were significantly reduced by β‑catenin siRNA (P<0.01), whereas BMP4 levels were significantly increased (P<0.01). In summary, the damaged brain tissues in HIBD may promote NSCs to differentiate into neurons for self‑repair processes. β‑Catenin, BMP4 and Ngn1 may be important for the coordination of NSC proliferation and differentiation following HIBD.


Molecular Characterization of Streptococcus agalactiae Causing Community- and Hospital-Acquired Infections in Shanghai, China.

  • Haoqin Jiang‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Streptococcus agalactiae, a colonizing agent in pregnant women and the main cause of neonatal sepsis and meningitis, has been increasingly associated with invasive disease in nonpregnant adults. We collected a total of 87 non-repetitive S. agalactiae isolates causing community-acquired (CA) and hospital-acquired (HA) infections in nonpregnant adults from a teaching hospital in Shanghai between 2009 and 2013. We identified and characterized their antibiotic resistance, sequence type (ST), serotype, virulence, and biofilm formation. The most frequent STs were ST19 (29.9%), ST23 (16.1%), ST12 (13.8%), and ST1 (12.6%). ST19 had significantly different distributions between CA- and HA-group B Streptococci (GBS) isolates. The most frequent serotypes were III (32.2%), Ia (26.4%), V (14.9%), Ib (13.8%), and II (5.7%). Serotype III/ST19 was significantly associated with levofloxacin resistance in all isoates. The HA-GBS multidrug resistant rate was much higher than that of CA-GBS. Virulence genes pavA, cfb were found in all isolates. Strong correlations exist between serotype Ib (CA and HA) and surface protein genes spb1 and bac, serotype III (HA) and surface protein gene cps and GBS pilus cluster. The serotype, epidemic clone, PFGE-based genotype, and virulence gene are closely related between CA-GBS and HA-GBS, and certain serotypes and clone types were significantly associated with antibiotic resistance. However, CA-GBS and HA-GBS still had significant differences in their distribution of clone types, antibiotic resistance, and specific virulence genes, which may provide a basis for infection control.


Effects of Mental Load and Fatigue on Steady-State Evoked Potential Based Brain Computer Interface Tasks: A Comparison of Periodic Flickering and Motion-Reversal Based Visual Attention.

  • Jun Xie‎ et al.
  • PloS one‎
  • 2016‎

Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.


Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition.

  • Haipei Yao‎ et al.
  • Scientific reports‎
  • 2016‎

Proliferative vitreoretinopathy (PVR), a serious vision-threatening complication of retinal detachment (RD), is characterized by the formation of contractile fibrotic membranes, in which epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a major event. Recent studies suggest an important role of bone morphogenetic protein 4 (BMP4) in the suppression of fibrosis. In this study, we aimed to investigate the role of BMP4 in the pathological process of PVR, particularly in the EMT of RPE cells. We found that BMP4 and its receptors were co-labelled with cytokeratin and α-SMA positive cells within the PVR membrane. Moreover, the mRNA and protein expression levels of BMP4 were decreased whereas BMP4 receptors ALK2, ALK3 and ALK6 were increased during TGF-β-induced EMT in primary RPE cells. Exogenous BMP4 inhibited TGF-β-induced epithelial marker down-regulation, as well as mesenchymal marker up-regulation at both the mRNA and protein levels in RPE cells. In addition, BMP4 treatment attenuated the TGF-β-induced gel contraction, cell migration and Smad2/3 phosphorylation. However, knockdown of endogenous BMP4 stimulated changes in EMT markers. Our results confirm the hypothesis that BMP4 might inhibit TGF-β-mediated EMT in RPE cells via the Smad2/3 pathway and suppress contraction. This might represent a potential treatment for PVR.


Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis.

  • Lina Sun‎ et al.
  • Scientific reports‎
  • 2016‎

Interstitial fibrosis represents a key pathological process in non-alcoholic steatohepatitis (NASH). In the liver, fibrogenesis is primarily mediated by activated hepatic stellate cells (HSCs) transitioning from a quiescent state in response to a host of stimuli. The molecular mechanism underlying HSC activation is not completely understood. Here we report that there was a simultaneous up-regulation of PIAS4 expression and down-regulation of SIRT1 expression accompanying increased hepatic fibrogenesis in an MCD-diet induced mouse model of NASH. In cultured primary mouse HSCs, stimulation with high glucose activated PIAS4 while at the same time repressed SIRT1. Over-expression of PIAS4 directly repressed SIRT1 promoter activity. In contrast, depletion of PIAS4 restored SIRT1 expression in HSCs treated with high glucose. Estrogen, a known NASH-protective hormone, antagonized HSC activation by targeting PIAS4. Lentivirus-mediated delivery of short hairpin RNA (shRNA) targeting PIAS4 in mice ameliorated MCD diet induced liver fibrosis by normalizing SIRT1 expression in vivo. PIAS4 promoted HSC activation in a SIRT1-dependent manner in vitro. Mechanistically, PIAS4 mediated SIRT1 repression led to SMAD3 hyperacetylation and enhanced SMAD3 binding to fibrogenic gene promoters. Taken together, our data suggest SIRT1 trans-repression by PIAS4 plays an important role in HSC activation and liver fibrosis.


Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398.

  • Yanan Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Novel Staphylococcus aureus clones continue to emerge that cause infections in otherwise healthy people. One example is the sequence type (ST) 398 lineage, which we show here is increasing in importance as a significant cause of community-associated (CA) human infections in China. We have a profound lack of understanding about what determines the considerable virulence potential of such newly emerging clones. Information about the contribution to virulence of the more recently discovered ESAT-6 secretion system (ESS) has remained particularly scarce. The Chinese ST398 isolates exhibited significantly increased expression of ESS genes as compared to predominant hospital-associated clones, which we found is likely due to increased expression of the accessory gene regulator (Agr) system and control of ESS by Agr. Importantly, deletion of essB in ST398 resulted in significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models. Our results demonstrate a key function of ESS in promoting virulence and mechanisms of resistance to innate host defense in an important emerging CA-S. aureus lineage. They suggest that ESS has a so far underestimated role in promoting aggressive virulence and epidemiological success of S. aureus.


Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population.

  • Rui Sun‎ et al.
  • Oncotarget‎
  • 2016‎

Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ2 test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: