Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Breast Milk Lipidome Is Associated with Early Growth Trajectory in Preterm Infants.

  • Marie-Cécile Alexandre-Gouabau‎ et al.
  • Nutrients‎
  • 2018‎

Human milk is recommended for feeding preterm infants. The current pilot study aims to determine whether breast-milk lipidome had any impact on the early growth-pattern of preterm infants fed their own mother's milk. A prospective-monocentric-observational birth-cohort was established, enrolling 138 preterm infants, who received their own mother's breast-milk throughout hospital stay. All infants were ranked according to the change in weight Z-score between birth and hospital discharge. Then, we selected infants who experienced "slower" (n = 15, -1.54 ± 0.42 Z-score) or "faster" (n = 11, -0.48 ± 0.19 Z-score) growth; as expected, although groups did not differ regarding gestational age, birth weight Z-score was lower in the "faster-growth" group (0.56 ± 0.72 vs. -1.59 ± 0.96). Liquid chromatography-mass spectrometry lipidomic signatures combined with multivariate analyses made it possible to identify breast-milk lipid species that allowed clear-cut discrimination between groups. Validation of the selected biomarkers was performed using multidimensional statistical, false-discovery-rate and ROC (Receiver Operating Characteristic) tools. Breast-milk associated with faster growth contained more medium-chain saturated fatty acid and sphingomyelin, dihomo-γ-linolenic acid (DGLA)-containing phosphethanolamine, and less oleic acid-containing triglyceride and DGLA-oxylipin. The ability of such biomarkers to predict early-growth was validated in presence of confounding clinical factors but remains to be ascertained in larger cohort studies.


Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse.

  • Laetitia Ledein‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Genetic deletion and pharmacological studies suggest a role for lysophosphatidic acid (LPA1 ) receptor in fibrosis. We investigated the therapeutic potential in systemic sclerosis (SSc) of a new orally active selective LPA1 receptor antagonist using dermal fibroblasts from patients and an animal model of skin fibrosis.


Late-Stage Glioma Is Associated with Deleterious Alteration of Gut Bacterial Metabolites in Mice.

  • Aglae Herbreteau‎ et al.
  • Metabolites‎
  • 2022‎

Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.


Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD.

  • Manon Durand‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the "nonmitochondrial" hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the "nonmitochondrial" lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.


Endothelial-protective effects of a G-protein-biased sphingosine-1 phosphate receptor-1 agonist, SAR247799, in type-2 diabetes rats and a randomized placebo-controlled patient trial.

  • Luc Bergougnan‎ et al.
  • British journal of clinical pharmacology‎
  • 2021‎

SAR247799 is a G-protein-biased sphingosine-1 phosphate receptor-1 (S1P1 ) agonist designed to activate endothelial S1P1 and provide endothelial-protective properties, while limiting S1P1 desensitization and consequent lymphocyte-count reduction associated with higher doses. The aim was to show whether S1P1 activation can promote endothelial effects in patients and, if so, select SAR247799 doses for further clinical investigation.


Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single-step method for the radioiodination and astatination of antibodies.

  • Marion Berdal‎ et al.
  • Chemical science‎
  • 2020‎

Easy access to radioiodinated and 211At-labelled bio(macro)molecules is essential to develop new strategies in nuclear imaging and targeted radionuclide therapy of cancers. Yet, the labelling of complex molecules with heavy radiohalogens is often poorly effective due to the multiple steps and intermediate purifications needed. Herein, we investigate the potential of arylboron chemistry as an alternative approach for the late stage labelling of antibodies. The reactivity of a model precursor, 4-chlorobenzeneboronic acid (1) with nucleophilic iodine-125 and astatine-211 was at first investigated in aqueous conditions. In the presence of a copper(ii) catalyst and 1,10-phenanthroline, quantitative radiochemical yields (RCYs) were achieved within 30 minutes at room temperature. The optimum conditions were then applied to a CD138 targeting monoclonal antibody (mAb) that has previously been validated for imaging and therapy in a preclinical model of multiple myeloma. RCYs remained high (>80% for 125I-labelling and >95% for 211At-labelling), and the whole procedure led to increased specific activities within less time in comparison with previously reported methods. Biodistribution study in mice indicated that targeting properties of the radiolabelled mAb were well preserved, leading to a high tumour uptake in a CD138 expressing tumour model. The possibility of divergent synthesis from a common modified carrier protein demonstrated herein opens facilitated perspectives in radiotheranostic applications with the radioiodine/211At pairs. Overall, the possibility to develop radiolabelling kits offered by this procedure should facilitate its translation to clinical applications.


PCSK9 and lipoprotein (a) levels are two predictors of coronary artery calcification in asymptomatic patients with familial hypercholesterolemia.

  • Rodrigo Alonso‎ et al.
  • Atherosclerosis‎
  • 2016‎

We aimed to assess whether elevated PCSK9 and lipoprotein (a) [Lp(a)] levels associate with coronary artery calcification (CAC), a good marker of atherosclerosis burden, in asymptomatic familial hypercholesterolemia.


A G-protein-biased S1P1 agonist, SAR247799, improved LVH and diastolic function in a rat model of metabolic syndrome.

  • Maria Francesca Evaristi‎ et al.
  • PloS one‎
  • 2022‎

Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function.


Effect of Omega-3 Fatty Acid Supplementation on the Postprandial Metabolism of Apolipoprotein(a) in Familial Hypercholesterolemia.

  • Qidi Ying‎ et al.
  • Journal of atherosclerosis and thrombosis‎
  • 2023‎

Lipoprotein(a) (Lp(a)) is a low-density lipoprotein-like particle containing apolipoprotein(a) (apo(a)) that increases the risk of atherosclerotic cardiovascular disease (ASCVD) in familial hypercholesterolemia (FH). Postprandial redistribution of apo(a) protein from Lp(a) to triglyceride-rich lipoproteins (TRLs) may also increase the atherogenicity of TRL particles. Omega-3 fatty acid (ω3FA) supplementation improves postprandial TRL metabolism in FH subjects. However, its effect on postprandial apo(a) metabolism has yet to be investigated.


Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis.

  • Amran Daher-Abdi‎ et al.
  • Nutrients‎
  • 2021‎

Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.


Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid.

  • Marine Coué‎ et al.
  • Nutrients‎
  • 2019‎

Non-alcoholic steatohepatitis (NASH) is characterized by an excess of lipids and oxidative stress in the liver. Spirulina was reported to possess hypolipemic and antioxidative effects and might counteract NASH development. C57Bl/6J mice were fed a western diet (WD) during 25 weeks with or without spirulina liquid extract (SLE) at 2 different doses (WDS1 and WDS2 groups) in drinking water. Liver histology, inflammation, and oxidative stress were assessed as well as glucose tolerance status, lipid metabolism, and gallbladder bile acid profile. WDS2 gained significantly less weight than WD. Liver weight-to-body weight ratio and plasma alanine aminotransferase were significantly lower in WDS2 mice. A reduced liver fibrosis and NFκBp65 protein expression were measured in the supplemented group as a lower accumulation of superoxide anion, nitric oxide, and thiobarbituric reactive substances. WDS2 mice showed also a preserved glucose tolerance, a strong decrease of plasma cholesterol, and a significant increase of gallbladder ursodeoxycholic acid and β-muricholic acid. Our findings demonstrate a protective effect of SLE against WD induced NASH that is related to less inflammation and oxidative stress, a preserved glucose tolerance, and less hepatotoxic bile acid profile.


Consequences of blunting the mevalonate pathway in cancer identified by a pluri-omics approach.

  • Sophie Goulitquer‎ et al.
  • Cell death & disease‎
  • 2018‎

We have previously shown that the combination of statins and taxanes was a powerful trigger of HGT-1 human gastric cancer cells' apoptosis1. Importantly, several genes involved in the "Central carbon metabolism pathway in cancer", as reported in the Kyoto Encyclopedia of Genes and Genomes, were either up- (ACLY, ERBB2, GCK, MYC, PGM, PKFB2, SLC1A5, SLC7A5, SLC16A3,) or down- (IDH, MDH1, OGDH, P53, PDK) regulated in response to the drug association. In the present study, we conducted non-targeted metabolomics and lipidomics analyses by complementary methods and cross-platform initiatives, namely mass spectrometry (GC-MS, LC-MS) and nuclear magnetic resonance (NMR), to analyze the changes resulting from these treatments. We identified several altered biochemical pathways involved in the anabolism and disposition of amino acids, sugars, and lipids. Using the Cytoscape environment with, as an input, the identified biochemical marker changes, we distinguished the functional links between pathways. Finally, looking at the overlap between metabolomics/lipidomics and transcriptome changes, we identified correlations between gene expression modifications and changes in metabolites/lipids. Among the metabolites commonly detected by all types of platforms, glutamine was the most induced (6-7-fold), pointing to an important metabolic adaptation of cancer cells. Taken together, our results demonstrated that combining robust biochemical and molecular approaches was efficient to identify both altered metabolic pathways and overlapping gene expression alterations in human gastric cancer cells engaging into apoptosis following blunting the cholesterol synthesis pathway.


Plasma lipidomic analysis reveals strong similarities between lipid fingerprints in human, hamster and mouse compared to other animal species.

  • Zied Kaabia‎ et al.
  • Scientific reports‎
  • 2018‎

Cardiovascular diseases are often associated with impaired lipid metabolism. Animal models are useful for deciphering the physiological mechanisms underlying these pathologies. However, lipid metabolism is contrasted between species limiting the transposition of findings from animals to human. Hence, we aimed to compare extended lipid profiles of several animal species to bring new insights in animal model selections. Human lipid phenotype was compared with those of 10 animal species. Standard plasma lipids and lipoprotein profiles were obtained by usual methods and lipidomic analysis was conducted by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). As anticipated, we found contrasted lipid profiles between species. Some of them exhibited similar plasma lipids to human (non-human primate, rat, hamster, pig), but only usual lipid profiles of pigs were superimposable with human. LC-HRMS analyses allowed the identification of 106 other molecular species of lipids, common to all samples and belonging to major lipid families. Multivariate analyses clearly showed that hamster and, in a lower extent mouse, exhibited close lipid fingerprints to that of human. Besides, several lipid candidates that were previously reported to study cardiovascular diseases ranged similarly in human and hamster. Hence, hamster appeared to be the best option to study physiological disturbances related to cardiovascular diseases.


PCSK9 Modulates the Secretion But Not the Cellular Uptake of Lipoprotein(a) Ex Vivo: An Effect Blunted by Alirocumab.

  • Elise F Villard‎ et al.
  • JACC. Basic to translational science‎
  • 2016‎

To elucidate how the proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor alirocumab modulates lipoprotein(a) [Lp(a)] plasma levels, the authors performed a series of Lp(a) uptake studies in primary human hepatocytes and dermal fibroblasts and measured Lp(a) secretion from human hepatocytes. They found that Lp(a) cellular uptake occurred in a low-density lipoprotein receptor-independent manner. Neither PCSK9 nor alirocumab altered Lp(a) internalization. By contrast, the secretion of apolipoprotein (a) from human hepatocytes was sharply increased by PCSK9, an effect that was reversed by alirocumab. They propose that PCSK9 does not significantly modulate Lp(a) catabolism, but rather enhances the secretion of Lp(a) from liver cells.


Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ.

  • Cecilia Hurtado‎ et al.
  • Scientific reports‎
  • 2019‎

NOTCH plays a pivotal role during normal development and in congenital disorders and cancer. γ-secretase inhibitors are commonly used to probe NOTCH function, but also block processing of numerous other proteins. We discovered a new class of small molecule inhibitor that disrupts the interaction between NOTCH and RBPJ, which is the main transcriptional effector of NOTCH signaling. RBPJ Inhibitor-1 (RIN1) also blocked the functional interaction of RBPJ with SHARP, a scaffold protein that forms a transcriptional repressor complex with RBPJ in the absence of NOTCH signaling. RIN1 induced changes in gene expression that resembled siRNA silencing of RBPJ rather than inhibition at the level of NOTCH itself. Consistent with disruption of NOTCH signaling, RIN1 inhibited the proliferation of hematologic cancer cell lines and promoted skeletal muscle differentiation from C2C12 myoblasts. Thus, RIN1 inhibits RBPJ in its repressing and activating contexts, and can be exploited for chemical biology and therapeutic applications.


Generation of iPSC line from MYH7 R403L mutation carrier with severe hypertrophic cardiomyopathy and isogenic CRISPR/Cas9 corrected control.

  • Vincent Fontaine‎ et al.
  • Stem cell research‎
  • 2021‎

MYH7 is a major gene responsible for hypertrophic cardiomyopathy (HCM). From patient's skin fibroblasts, we derived an iPSC line (CDGEN1.16) harboring the heterozygous MYH7 R403L mutation, a hot-spot codon in HCM. We subsequently corrected the mutated codon using CRISPR/Cas9 editing and obtained the isogenic control line (CDGEN1.16.40.5) preserving the genomic background of the patient. Both lines were pluripotent and could be efficiently committed to beating cardiomyocytes (CM) suitable for subsequent cell or pseudo-tissue study of HCM pathology.


Lipoprotein(a) Cellular Uptake Ex Vivo and Hepatic Capture In Vivo Is Insensitive to PCSK9 Inhibition With Alirocumab.

  • Kévin Chemello‎ et al.
  • JACC. Basic to translational science‎
  • 2020‎

Lipoprotein(a) (Lp[a]) is the most common genetically inherited risk factor for cardiovascular disease. Many aspects of Lp(a) metabolism remain unknown. We assessed the uptake of fluorescent Lp(a) in primary human lymphocytes as well as Lp(a) hepatic capture in a mouse model in which endogenous hepatocytes have been ablated and replaced with human ones. Modulation of LDLR expression with the PCSK9 inhibitor alirocumab did not alter the cellular or the hepatic uptake of Lp(a), demonstrating that the LDL receptor is not a major route for Lp(a) plasma clearance. These results have clinical implications because they underpin why statins are not efficient at reducing Lp(a).


High Glucose Activates YAP Signaling to Promote Vascular Inflammation.

  • Jeremy Ortillon‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The YAP/TAZ signaling is known to regulate endothelial activation and vascular inflammation in response to shear stress. Moreover, YAP/TAZ signaling plays a role in the progression of cancers and renal damage associated with diabetes. However, whether YAP/TAZ signaling is also implicated in diabetes-associated vascular complications is not known.


Characterization of a new potent and long-lasting single chain peptide agonist of RXFP1 in cells and in vivo translational models.

  • Stephane Illiano‎ et al.
  • Scientific reports‎
  • 2022‎

Despite beneficial effects in acute heart failure, the full therapeutic potential of recombinant relaxin-2 has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. A multiparametric optimization of the relaxin B-chain led to the identification of single chain lipidated peptide agonists of RXFP1 like SA10SC-RLX with subcutaneous bioavailability and extended half-life. SA10SC-RLX has sub nanomolar activity on cells expressing human RXFP1 and molecular modeling associated with the study of different RXFP1 mutants was used to decipher the mechanism of SA10SC-RLX interaction with RXFP1. Telemetry was performed in rat where SA10SC-RLX was able to engage RXFP1 after subcutaneous administration without tachyphylaxis after repeated dosing. Renal blood flow was then used as a translational model to evaluate RXFP1 activation. SA10SC-RLX increased renal blood flow and decreased renal vascular resistance in rats as reported for relaxin in humans. In conclusion, SA10SC-RLX mimics relaxin activity in in vitro and in vivo models of acute RXFP1 engagement. SA10SC-RLX represents a new class of long-lasting RXFP1 agonist, suitable for once daily subcutaneous administration in patients and potentially paving the way to new treatments for chronic fibrotic and cardiovascular diseases.


Apolipoprotein F is reduced in humans with steatosis and controls plasma triglyceride-rich lipoprotein metabolism.

  • Audrey Deprince‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2023‎

NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: