Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Structural basis of the zinc-induced cytoplasmic aggregation of the RNA-binding protein SFPQ.

  • Jie Huang‎ et al.
  • Nucleic acids research‎
  • 2020‎

SFPQ is a ubiquitous nuclear RNA-binding protein implicated in many aspects of RNA biogenesis. Importantly, nuclear depletion and cytoplasmic accumulation of SFPQ has been linked to neuropathological conditions such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Here, we describe a molecular mechanism by which SFPQ is mislocalized to the cytoplasm. We report an unexpected discovery of the infinite polymerization of SFPQ that is induced by zinc binding to the protein. The crystal structure of human SFPQ in complex with zinc at 1.94 Å resolution reveals intermolecular interactions between SFPQ molecules that are mediated by zinc. As anticipated from the crystal structure, the application of zinc to primary cortical neurons induced the cytoplasmic accumulation and aggregation of SFPQ. Mutagenesis of the three zinc-coordinating histidine residues resulted in a significant reduction in the zinc-binding affinity of SFPQ in solution and the zinc-induced cytoplasmic aggregation of SFPQ in cultured neurons. Taken together, we propose that dysregulation of zinc availability and/or localization in neuronal cells may represent a mechanism for the imbalance in the nucleocytoplasmic distribution of SFPQ, which is an emerging hallmark of neurodegenerative diseases including AD and ALS.


Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons.

  • Jocelyn Widagdo‎ et al.
  • Open biology‎
  • 2022‎

Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.


Vasorelaxant effect of osterici radix ethanol extract on rat aortic rings.

  • Kyungjin Lee‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

The root of Ostericum koreanum Maximowicz has been used as a traditional medicine called "Kanghwal" in Korea (or "Qianghuo" in China). The purpose of this study was to investigate the vasorelaxant activity and mechanism of action of an ethanol extract of the O. koreanum root (EOK). We used isolated rat aortic rings to assess the effects of EOK on various vasorelaxant or vasoconstriction factors. EOK induced vasorelaxation in phenylephrine hydrochloride (PE) or KCl precontracted aortic rings in a concentration-dependent manner. However, the vasorelaxant effects of EOK on endothelium-intact aortic rings were reduced by pretreatment with L-NAME or methylene blue. In Ca(2+)-free Krebs-Henseleit solution, pretreatment with EOK (0.3 mg/mL) completely inhibited PE-induced constriction. In addition, EOK (0.3 mg/mL) also completely inhibited vasoconstriction induced by supplemental Ca(2+) in aortic rings that were precontracted with PE or KCl. Furthermore, the EOK-induced vasorelaxation in PE-contracted aortic rings was inhibited by preincubation with nifedipine. These results indicate that the vasorelaxant effects of EOK are responsible for the induction of NO formation from L-Arg and NO-cGMP pathways, blockage of the extracellular Ca(2+) entry via the receptor-operative Ca(2+) channel and voltage-dependent calcium channel, and blockage of sarcoplasmic reticulum Ca(2+) release via the inositol triphosphate pathway.


Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

  • Hongsik Lee‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.


The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation.

  • Mihwa Lee‎ et al.
  • Nucleic acids research‎
  • 2015‎

SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism.


The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions.

  • Ju-Chun Hsiao‎ et al.
  • Biochimica et biophysica acta. Bioenergetics‎
  • 2018‎

A central conserved arginine, first identified as a clinical mutation leading to sulfite oxidase deficiency, is essential for catalytic competency of sulfite oxidizing molybdoenzymes, but the molecular basis for its effects on turnover and substrate affinity have not been fully elucidated. We have used a bacterial sulfite dehydrogenase, SorT, which lacks an internal heme group, but transfers electrons to an external, electron accepting cytochrome, SorU, to investigate the molecular functions of this arginine residue (Arg78). Assay of the SorT Mo centre catalytic competency in the absence of SorU showed that substitutions in the central arginine (R78Q, R78K and R78M mutations) only moderately altered SorT catalytic properties, except for R78M which caused significant reduction in SorT activity. The substitutions also altered the Mo-centre redox potentials (MoVI/V potential lowered by ca. 60-80mV). However, all Arg78 mutations significantly impaired the ability of SorT to transfer electrons to SorU, where activities were reduced 17 to 46-fold compared to SorTWT, precluding determination of kinetic parameters. This was accompanied by the observation of conformational changes in both the introduced Gln and Lys residues in the crystal structure of the enzymes. Taking into account data collected by others on related SOE mutations we propose that the formation and maintenance of an electron transfer complex between the Mo centre and electron accepting heme groups is the main function of the central arginine, and that the reduced turnover and increases in KMsulfite are caused by the inefficient operation of the oxidative half reaction of the catalytic cycle in enzymes carrying these mutations.


Structure of the T109S mutant of Escherichia coli dihydroorotase complexed with the inhibitor 5-fluoroorotate: catalytic activity is reflected by the crystal form.

  • Mihwa Lee‎ et al.
  • Acta crystallographica. Section F, Structural biology and crystallization communications‎
  • 2007‎

Crystals of a single-point mutant (T109S) of Escherichia coli dihydroorotase (DHOase) with diminished activity grown in the presence of L-dihydroorotate (L-DHO) are tetragonal, with a monomer in the asymmetric unit. These crystals are extremely unstable and disintegrate shortly after formation, which is followed by the growth of orthorhombic crystals from the remnants of the tetragonal crystals or at new nucleation sites. Orthorhombic crystals, for which a structure has previously been reported [Thoden et al. (2001), Biochemistry, 40, 6989-6997; Lee et al. (2005), J. Mol. Biol. 348, 523-533], contain a dimer of DHOase in the asymmetric unit; the active site of one monomer contains the substrate N-carbamyl-L-aspartate (L-CA-asp) and the active site of the other monomer contains the product of the reaction, L-DHO. In the subunit with L-DHO in the active site, a surface loop (residues 105-115) is 'open'. In the other subunit, with L-CA-asp in the active site, the loop folds inwards, forming specific hydrogen bonds from the loop to the L-CA-asp. The tetragonal crystal form can be stabilized by crystallization in the presence of the inhibitor 5-fluoroorotate (FOA), a product (L-DHO) mimic. Crystals of the complex of T109S DHOase with FOA are tetragonal, space group P4(1)2(1)2, with unit-cell parameters a = b = 72.6, c = 176.1 A. The structure has been refined to R and R(free) values of 0.218 and 0.257, despite severe anisotropy of the diffraction. In this structure, the flexible loops are both in the 'open' conformation, which is consistent with FOA, like L-DHO, binding at both sites. The behaviour of the T109S mutant crystals of DHOase in the presence of L-DHO is explained by initial binding of L-DHO to both subunits, followed by slow conversion to L-CA-asp, with consequent movement of the flexible loop and dissolution of the crystals. Orthorhombic crystals are then able to grow in the presence of L-DHO and L-CA-asp.


Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains.

  • Pei Wen Lee‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONO-SFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.


Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function.

  • Ye-Jin Park‎ et al.
  • iScience‎
  • 2021‎

Phosphatidylserine (PS) is an integral component of eukaryotic cell membranes and organelles. The Drosophila genome contains a single PS synthase (PSS)-encoding gene (Pss) homologous to mammalian PSSs. Flies with Pss loss-of-function alleles show a reduced life span, increased bang sensitivity, locomotor defects, and vacuolated brain, which are the signs associated with neurodegeneration. We observed defective mitochondria in mutant adult brain, as well as elevated production of reactive oxygen species, and an increase in autophagy and apoptotic cell death. Intriguingly, glial-specific knockdown or overexpression of Pss alters synaptogenesis and axonal growth in the larval stage, causes developmental arrest in pupal stages, and neurodegeneration in adults. This is not observed with pan-neuronal up- or down-regulation. These findings suggest that precisely regulated expression of Pss in glia is essential for the development and maintenance of brain function. We propose a mechanism that underlies these neurodegenerative phenotypes triggered by defective PS metabolism.


Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages.

  • Gabsik Yang‎ et al.
  • BMC complementary and alternative medicine‎
  • 2012‎

Cudrania tricuspidata extract is an important traditional herbal remedy for tumors, inflammation, gastritis, and liver damage and is predominantly used in Korea, China, and Japan. However, the anti-inflammatory effects of the extract have not yet been conclusively proved.


Vasorelaxant effect of Prunus yedoensis bark.

  • Kyungjin Lee‎ et al.
  • BMC complementary and alternative medicine‎
  • 2013‎

Prunus yedoensis Matsum. is used as traditional medicine-'Yaeng-Pi' or 'Hua-Pi'-in Japan and Korea. However, no studies have examined the pharmacological activities of the P. yedoensis bark. Only the antioxidant and antiviral activities of P. yedoensis fruit and the anti-hyperglycaemic effect of P. yedoensis leaf have been investigated. While studying the antihypertensive effects of several medicinal plants, we found that a methanol extract of P. yedoensis bark (MEPY) had distinct vasorelaxant effects on rat aortic rings.


Rapid purification method for human SFPQ by implementing zinc-induced polymerization.

  • Yee Wa Lim‎ et al.
  • Protein expression and purification‎
  • 2020‎

Splicing factor proline- and glutamine-rich (SFPQ) is an RNA-binding protein, playing significant roles in gene regulation and subnuclear body formation. Our recent serendipitous discovery showed that SFPQ binds zinc directly and forms an infinite polymer that is induced by zinc binding to the protein. The zinc-induced reversible polymerization has led us to exploit this property to develop a rapid purification strategy for SFPQ without the use of affinity tags. In combination with the variation of ionic strength for salting-out of SFPQ, the reversible zinc-induced precipitation of SFPQ reduced the purification time required to obtain pure SFPQ to a single day. The purified protein was subjected to the previously reported crystallization condition. The resulting crystals diffracted to 2.22 Å resolution, confirming the quality of SFPQ purified with this new rapid purification strategy.


Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes.

  • Mugdha Bhati‎ et al.
  • The EMBO journal‎
  • 2008‎

LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1(LBD)). Although the LIM interaction domain of Ldb1 (Ldb1(LID)) and Isl1(LBD) share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1(LBD) mimics Ldb1(LID). These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.


Structural basis of dimerization and nucleic acid binding of human DBHS proteins NONO and PSPC1.

  • Gavin J Knott‎ et al.
  • Nucleic acids research‎
  • 2022‎

The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'β-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: