Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

The acute effects of caffeine intake on time under tension and power generated during the bench press movement.

  • Michal Wilk‎ et al.
  • Journal of the International Society of Sports Nutrition‎
  • 2019‎

The ability to generate high levels of power is one of the key factors determining success in many sport disciplines. Although there are studies confirming ergogenic effects of caffeine (CAF) on different physical and mental abilities, much controversy remains about its influence on power. The main goal of this study was to assess the effects of caffeine supplementation on time under tension (TUT) and the number of performed repetitions (REP). The second objective was to determine the effects of CAF supplementation on power (P) and movement velocity (V) during the bench press movement. Additionally the authors evaluated whether CAF has a significant effect on velocity of the bar in the eccentric (ECC) phase (VEMEAN) of the bench press movement.


The Acute Effects of External Compression With Blood Flow Restriction on Maximal Strength and Strength-Endurance Performance of the Upper Limbs.

  • Michal Wilk‎ et al.
  • Frontiers in physiology‎
  • 2020‎

The main goal of the present study was to evaluate the acute effects external compression with blood flow restriction (BFR) at 100 and 150% of full arterial occlusion pressure (AOP) on maximal strength and strength-endurance performance during the bench press (BP) exercise. The study included 12 strength-trained male subjects (age = 23.2 ± 2.66 years; body mass = 75.3 ± 6.33 kg; height = 179.1 ± 3.82 cm), experienced in resistance training (5.7 ± 2.93 years). During the experimental sessions in a randomized crossover design, the subjects performed a 1 repetition maximum (1RM) test and three sets of the BP using 60% 1RM to failure with three different conditions: without BFR (NO-BFR); BFR with a pressure of 100% AOP (BFR100); and BFR with a pressure of 150% AOP (BFR150). The differences between the NO-BFR, BFR100, and BFR150 conditions were examined using repeated measures ANOVA. The ANOVA indicated significant main effect for condition in 1RM, number of performed repetitions (REP), and time under tension (TUT) (p < 0.01). Post hoc analyses for the main effect indicated significant increases in 1RM (p < 0.01; 95.00 ± 15.37 vs 91.87 ± 15.99), REP (p < 0.01; 17.56 ± 3.36 vs 15.67 ± 5.24), and TUT (p < 0.01; 32.89 ± 6.40 vs 28.72 ± 6.18) for the BFR150 condition compared to NO-BFR. Furthermore, significant increases in REP (p = 0.03; 17.56 ± 3.36 vs 16.47 ± 4.01) and TUT (p = 0.03; 32.89 ± 6.40 vs 30.00 ± 6.45) were observed for the BFR150 condition compared to the BFR100. The results of the present study indicate that high external compression increases maximal strength evaluated by the 1RM test, as well as endurance performance during three sets of the BP exercise.


The Acute Effect of Various Doses of Caffeine on Power Output and Velocity during the Bench Press Exercise among Athletes Habitually Using Caffeine.

  • Michal Wilk‎ et al.
  • Nutrients‎
  • 2019‎

Previously studies confirm ergogenic effects of caffeine (CAF); however there is no available scientific data regarding the influence of acute CAF intake on power output in athletes habitually consuming CAF. The main goal of this study was to assess the acute effect of 3, 6, 9 mg/kg/b.m. doses of CAF intake on power output and bench press bar velocity in athletes habitually consuming CAF.


Does Post-Activation Performance Enhancement Occur During the Bench Press Exercise under Blood Flow Restriction?

  • Michal Wilk‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) during successive sets of the bench press (BP) exercise under blood flow restriction (BFR). Methods: The study included 10 strength-trained males (age = 29.8 ± 4.6 years; body mass = 94.3 ± 3.6 kg; BP 1-repetition maximum (1RM) = 168.5 ± 26.4 kg). The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols: under blood flow restriction (BFR) and control test protocol (CONT) without blood flow restriction. During the experimental sessions, the study participants performed 3 sets of 3 repetitions of the BP exercise at 70%1RM with a 5 min rest interval between sets. The differences in peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) between the CONT and BFR conditions were examined using 2-way (condition × set) repeated measures ANOVA. Furthermore, t-test comparisons between conditions were made for the set 2-set 1, set 3-set 1, and set 3-set 2 delta values for all variables. Results: The post hoc results for condition × set interaction in PP showed a significant increase in set 2 compared to set 1 for BFR (p < 0.01) and CONT (p = 0.01) conditions, a significant increase in set 3 compared to set 1 for the CONT (p = 0.01) condition, as well as a significant decrease in set 3 compared to set 1 for BFR condition occurred (p < 0.01). The post hoc results for condition × set interaction in PV showed a significant increase in set 2 compared to set 1 for BFR (p < 0.01) and CONT (p = 0.01) conditions, a significant increase in set 3 compared to set 1 for CONT (p = 0.03) condition, as well as a significant decrease in set 3 compared to set 1 for BFR condition (p < 0.01). The t-test comparisons showed significant differences in PP (p < 0.01) and PV (p = 0.01) for set 3-set 2 delta values between BFR and CONT conditions. Conclusion: The PAPE effect was analyzed through changes in power output and bar velocity that occurred under both the CONT and BFR conditions. However, the effects of PAPE have different kinetics in successive sets for BFR and for CONT conditions.


Post-activation Performance Enhancement in the Bench Press Throw: A Systematic Review and Meta-Analysis.

  • Michal Krzysztofik‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Background: Mechanical power output is recognized as a critical characteristic of an athlete with regard to superior performance during a competition. It seems fully justified that ballistic exercises, in which the external load is projected into a flight phase, as in the bench press throw (BPT), are the most commonly prescribed exercises for the development of power output. In addition, the muscular phenomenon known as post-activation performance enhancement (PAPE), which is an acute improvement in strength and power performance as a result of recent voluntary contractile history, has become the focus of many strength and conditioning training programs. Although the PAPE phenomenon is widely used in the upper-body training regimens, there are still several issues regarding training variables that facilitate the greatest increase in power output and need to be resolved. Objective: The purposes of this meta-analysis were to determine the effect of performing a conditioning activity (CA) on subsequent BPT performances and the influence of different types of CA, intra-complex rest intervals, and intensities during the CA on the upper-body PAPE effect in resistance-trained men. Methods: A search of electronic databases (MEDLINE, PubMed, and SPORTDiscus) was conducted to identify all studies that investigated the PAPE in the BPT up to August 2020. Eleven articles, which met the inclusion criteria, were consequently included for quality assessment and data extraction. All studies included 174 resistance-trained men [age: 25.2 ± 2.1 years; weight: 88.4 ± 7.5 kg; height: 1.82 ± 0.03 m; bench press (BP) relative strength: 1.31 ± 0.14 kg ± kg-1] as participants. Meta-analyses of standardized mean effect size (ES) between pre-CA mean and post-CA mean from individual studies were conducted using the random-effects model. Results: The effect of PAPE in the BPT was small (ES = 0.33; p < 0.01). The BP exercise as a CA at an intensity of 60-84% one-repetition maximum (1RM) (ES = 0.43) induced slightly greater PAPE effect than a ballistic-plyometric (ES = 0.29) and a BP exercise at ≥85% 1RM and at >100% 1RM as well as a concentric-only BP (ES = 0.23 and 0.22; ES = 0.11, respectively). A single set (ES = 0.37) of the CA resulted in a slightly greater effect than a multiple set (ES = 0.29). Moderate rest intervals induced a slightly greater PAPE effect for intensity below 85% 1RM (5-7 min, ES = 0.48) than shorter (0.15-4 min, ES = 0.4) and longer (≥8 min, ES = 0.36) intra-complex rest intervals. Considering an intensity above 85% 1RM during the CA, a moderate rest interval resulted in a similar PAPE effect (5-7 min, ES = 0.3) compared with longer (8 min, ES = 0.29) intra-complex rest interval, whereas shorter rest intervals resulted in a negative effect on BPT performance (0.15-4 min, ES = -0.13). Conclusion: The presented meta-analysis shows that performing a CA induces a small PAPE effect for the BPT performance in resistance-trained men. Individuals seeking to improve their BPT performance should consider preceding them with a single set of the BP exercise at moderate intensity (60-84% 1RM), performed 5-7 min before the explosive activity.


Impact of movement tempo on bar velocity and time under tension in resistance exercises with different external loads.

  • Robert Trybulski‎ et al.
  • Biology of sport‎
  • 2022‎

The goal of the study was to determine the differences between volitional and maximal movement tempo during resistance exercise. Ten healthy men volunteered for the study (age = 26.4 ± 4.8 years; body mass = 93.8 ± 9.6 kg; barbell squat one-repetition maximum (1RM) = 175 ± 16.7 kg; bench press 1RM = 140.5 ± 26.8 kg). In a randomized order, the participants performed six sets of the barbell squat and the bench press exercise at progressive loads from 40% to 90%1RM (step by 10%) under two testing conditions: with volitional movement tempo or with maximal movement tempo. The three-way repeated measures ANOVA showed a statistically significant multi-interaction effect for time under tension (p < 0.001), peak bar velocity (p = 0.04) and for mean bar velocity (p < 0.001). There was also a statistically significant main effect of movement tempo for time under tension (p < 0.001), peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The post hoc analysis for main effect of tempo revealed that time under tension was significantly longer for volitional compared to maximal tempo (0.84 vs 0.67 s, respectively), peak bar velocity was significantly higher for maximal compared to volitional tempo (1.24 m/s vs 0.90 m/s, respectively), and mean bar velocity was significant higher for maximal compared to volitional tempo (0.84 m/s vs 0.67 m/s, respectively). The presented results indicate that there were significant differences between volitional and maximal movement tempos in time under tension and bar velocity (peak and mean), as well as significant differences in those variables between the two exercises. Therefore, the velocity of movement and time under tension is related to movement tempo, external load and type of exercise used.


The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine.

  • Aleksandra Filip-Stachnik‎ et al.
  • Journal of the International Society of Sports Nutrition‎
  • 2021‎

The main goal of this study was to assess the acute effects of 3 and 6 mg of caffeine intake per kg of body mass (b.m.) on maximal strength and strength-endurance in women habituated to caffeine.


Reduction of leptin levels during acute exercise is dependent on fasting but not on caloric restriction during chronic exercise: A systematic review and meta-analysis.

  • Alexandre Fontana‎ et al.
  • PloS one‎
  • 2023‎

The importance of leptin in controlling body mass has recently gained more attention. Its levels are directly associated with the amount of fat mass, but not necessarily dependent on it. Exercise has great potential in reducing leptin levels, however the response of exercise to this cytokine is still not well understood.


Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods.

  • Michal Krzysztofik‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

Effective hypertrophy-oriented resistance training (RT) should comprise a combination of mechanical tension and metabolic stress. Regarding training variables, the most effective values are widely described in the literature. However, there is still a lack of consensus regarding the efficiency of advanced RT techniques and methods in comparison to traditional approaches.


Ischemia during rest intervals between sets prevents decreases in fatigue during the explosive squat exercise: a randomized, crossover study.

  • Robert Trybulski‎ et al.
  • Scientific reports‎
  • 2022‎

The study aimed to evaluate the impact of ischemia, used only before particular sets of a lower limb resistance exercise on power output. Ten healthy resistance-trained males (age = 26 ± 6 years; body mass = 90 ± 9 kg; training experience = 9 ± 7 years) performed two experimental sessions (with ischemia; control without ischemia) following a randomized crossover design. During the ischemic condition, the cuffs were inflated to 60% of arterial occlusion pressure. The cuffs were applied before each set for 4.5 min and released 30 s before the start of the set as the reperfusion (4.5 min ischemia + 0.5 min reperfusion). In the control condition, ischemia was not applied. During the experimental sessions, the subjects performed the Keiser machine squat exercise protocol which consisted of 5 sets of two repetitions, at a load of 60% of one-repetition maximum (1RM), with 5 min rest intervals between sets. The repetitions were performed with maximal velocity. The two-way repeated-measures ANOVA showed a statistically significant interaction effect for power output (p < 0.01; η2 = 0.26). There was also a statistically significant main effect of condition for power output (p = 0.02; η2 = 0.40). The post hoc analysis for interaction did not show significant differences between conditions in particular sets. The post hoc analysis for the main effect of the condition revealed that power output was significantly lower in the control group compared to the group where ischemic was used (p = 0.02). The t-test comparisons for particular sets showed a significant lower power output in set 3 (p = 0.03); set 4 (p < 0.01) and set 5 (p < 0.01) for the control condition when compared to the ischemic condition. The results indicate that ischemia applied before each set and released 30 s prior to the start of the squat exercise did not increase power output performance. However, we observed a significantly lower decline in power for the ischemic condition (4.5 min ischemia + 0.5 min reperfusion) in sets 3-5 compared to the control condition. Thus repeated ischemia with reperfusion used between sets can be an effective form of performance enhancement by preventing or at least diminishing fatigue during resistance exercise.


Effects of Resistance Training Performed with Different Loads in Untrained and Trained Male Adult Individuals on Maximal Strength and Muscle Hypertrophy: A Systematic Review.

  • Marcio Lacio‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

The load in resistance training is considered to be a critical variable for neuromuscular adaptations. Therefore, it is important to assess the effects of applying different loads on the development of maximal strength and muscular hypertrophy. The aim of this study was to systematically review the literature and compare the effects of resistance training that was performed with low loads versus moderate and high loads in untrained and trained healthy adult males on the development of maximal strength and muscle hypertrophy during randomized experimental designs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (2021) were followed with the eligibility criteria defined according to participants, interventions, comparators, outcomes, and study design (PICOS): (P) healthy males between 18 and 40 years old, (I) interventions performed with low loads, (C) interventions performed with moderate or high loads, (O) development of maximal strength and muscle hypertrophy, and (S) randomized experimental studies with between- or within-subject parallel designs. The literature search strategy was performed in three electronic databases (Embase, PubMed, and Web of Science) on 22 August 2021. Results: Twenty-three studies with a total of 563 participants (80.6% untrained and 19.4% trained) were selected. The studies included both relative and absolute loads. All studies were classified as being moderate-to-high methodological quality, although only two studies had a score higher than six points. The main findings indicated that the load magnitude that was used during resistance training influenced the dynamic strength and isometric strength gains. In general, comparisons between the groups (i.e., low, moderate, and high loads) showed higher gains in 1RM and maximal voluntary isometric contraction when moderate and high loads were used. In contrast, regarding muscle hypertrophy, most studies showed that when resistance training was performed to muscle failure, the load used had less influence on muscle hypertrophy. The current literature shows that gains in maximal strength are more pronounced with high and moderate loads compared to low loads in healthy adult male populations. However, for muscle hypertrophy, studies indicate that a wide spectrum of loads (i.e., 30 to 90% 1RM) may be used for healthy adult male populations.


The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads.

  • Jakub Jarosz‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The main aim of the present study was to evaluate the acute effects of ischemia used during rest periods on bar velocity changes during the bench press exercise at progressive loads, from 20 to 90% of 1RM. Ten healthy resistance trained men volunteered for the study (age = 26.3 ± 4.7 years; body mass = 89.8 ± 6.3 kg; bench press 1RM = 142.5 ± 16.9 kg; training experience = 7.8 ± 2.7 years). During the experimental sessions the subjects performed the bench press exercise under two different conditions, in a randomized and counterbalanced order: (a) ischemia condition, with ischemia applied before the first set and during every rest periods between sets, and (b) control condition where no ischemia was applied. During each experimental session eight sets of the bench press exercise were performed, against loads starting from 20 to 90% 1RM, increased progressively by 10% in each subsequent set. A 3-min rest interval between sets was used. For ischemia condition the cuffs was applied 3 min before the first set and during every rest period between sets. Ischemia was released during exercise. The cuff pressure was set to ∼80% of full arterial occlusion pressure. The two-way repeated measures ANOVA showed a statistically significant interaction effect for peak bar velocity (p = 0.04) and for mean bar velocity (p = 0.01). There was also a statistically significant main effect of condition for peak bar velocity (p < 0.01) but not for mean bar velocity (p = 0.25). The post hoc analysis for interaction showed significantly higher peak bar velocity for the ischemia condition compared to control at a load of 20% 1RM (p = 0.007) and at a load of 50% 1RM (p = 0.006). The results of the present study indicate that ischemia used before each set even for a brief duration of <3 min, has positive effects on peak bar velocity at light loads, but it is insufficient to induce such effect on higher loads.


The Effects of Plyometric Conditioning on Post-Activation Bench Press Performance.

  • Michal Krzysztofik‎ et al.
  • Journal of human kinetics‎
  • 2020‎

The present study aimed to determine the effects of plyometric push-ups as a conditioning activity (CA) on high-loaded bench press performance. Two groups of resistance-trained males age (24.5 ± 2.6 years, body mass 84.8 ± 8 kg) performed one of two CA protocols: 3 sets of 5 repetitions of plyometric push-ups with a 1 min rest interval between sets (PAPE; n=12) or equal time aerobic warm-up (CONT; n=12). Four minutes after completion of the CA protocols the participants performed 3 sets of 3 repetitions of the bench press exercise at 70%1RM and 4 min rest interval between sets to assess post-activation differences in peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) between conditions. The two-way ANOVA revealed significant condition × set interaction effect for PP (p<0.01), MP (p<0.05), PV (p<0.01), and MV (p=0.02). The post hoc for condition × set interaction showed that PAPE caused a significant decrease in PP and PV for P-Set2 and P-Set3 when compared to baseline (BA). The MP and MV for the PAPE condition decreased significantly during the P-Set3 compared to BA and to P-Set1. The t-test comparisons for delta values showed significant differences between PAPE and CONT in PP for P-Set1 - BA (p<0.01), in MP for P-Set2 - P-Set1 (p<0.03) and for P-Set3 - P-Set1 (p=0.04). Furthermore, there were significant differences in PV for P-Set3 - BA; P-Set2 - P-Set1; P-Set3 - P-Set1 (p<0.01; p<0.01; p<0.02 respectively). Finally, there were significant differences in MV for P-Set1 - BA; P-Set2 - P-Set1 and P-Set3 - P-Set1 (p<0.01; p<0.01; p<0.02 respectively). This study demonstrated that plyometric push-ups lead to performance enhancement of the bench press exercise at 70%1RM. The increases in performance were observed only in the first set following the CA, while a significant decrease of these variables was registered in P-Set2 and P-Set3.


Acute impact of blood flow restriction on strength-endurance performance during the bench press exercise.

  • Mariola Gepfert‎ et al.
  • Biology of sport‎
  • 2021‎

The main goal of the present study was to evaluate the acute effects of blood flow restriction (BFR) at 70% of full arterial occlusion pressure on strength-endurance performance during the bench press exercise. The study included 14 strength-trained male subjects (age = 25.6 ± 4.1 years; body mass = 81.7 ± 10.8 kg; bench press 1 repetition maximum (1RM) = 130.0 ± 22.1 kg), experienced in resistance training (3.9 ± 2.4 years). During the experimental sessions in a randomized crossover design, the subjects performed three sets of the bench press at 80% 1RM performed to failure with two different conditions: without BFR (CON); and with BFR (BFR). Friedman's test showed significant differences between BFR and CON conditions for the number of repetitions performed (p < 0.001); for peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The pairwise comparisons showed a significant decrease for peak bar velocity and mean bar velocity in individual Set 1 for BFR when compared to CON conditions (p = 0.01 for both). The two-way repeated measures ANOVA showed a significant main effect for the time under tension (p = 0.02). A post-hoc comparisons for the main effect showed a significant increase in time under tension for BFR when compared to CON (p = 0.02). The results of the presented study indicate that BFR used during strength-endurance exercise generally does not decrease the level of endurance performance, while it causes a drop in bar velocity.


Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs.

  • Michal Wilk‎ et al.
  • Frontiers in physiology‎
  • 2021‎

This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum -1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.


The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes.

  • Mariola Gepfert‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

The aim of the present study was to evaluate the effects of external compression with blood flow restriction on power output and bar velocity changes during the back-squat exercise (SQ). The study included 10 judo athletes (age = 28.4 ± 5.8 years; body mass = 81.3 ± 13.1 kg; SQ one-repetition maximum (1-RM) 152 ± 34 kg; training experience 10.7 ± 2.3 years).


Can Post-Activation Performance Enhancement (PAPE) Improve Resistance Training Volume during the Bench Press Exercise?

  • Michal Krzysztofik‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) on resistance training volume during the bench press exercise (BP). The study included 12 healthy strength-trained males (age 25.2 ± 2.1 years, body mass 92.1 ± 8.7 kg, BP one-repetition maximum (1RM) 28.8 ± 10.5 kg, training experience 6.3 ± 2.1 years). Methods: The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols with a conditioning activity (CA) consisting of the BP with three sets of three repetitions at 85% 1RM (PAPE), and a control without the CA (CONT). To assess the differences between PAPE and CONT, the participants performed three sets of the BP to volitional failure at 60% 1RM. The differences in the number of performed repetitions (REP), time under tension (TUT), peak power output (PP), mean of peak power output (PPMEAN), mean power output (MP), peak bar velocity (PV), mean of peak bar velocity (PVMEAN), and mean bar velocity (MV) between the CONT and PAPE conditions were examined using repeated measures ANOVA. Results: The post-hoc analysis for the main condition effect indicated significant increases in TUT (p < 0.01) for the BP following PAPE, compared to the CONT condition. Furthermore, there was a significant increase in TUT (p < 0.01) in the third set for PAPE compared to the CONT condition. No statistically significant main effect was revealed for REP, PP, PV, PPMEAN, PVMEAN, MP, and MV. Conclusion: The main finding of the study was that the PAPE protocol increased training volume based on TUT, without changes in the number of preformed REP.


Does Tempo of Resistance Exercise Impact Training Volume?

  • Michal Wilk‎ et al.
  • Journal of human kinetics‎
  • 2018‎

Volume and intensity of exercise are the basic components of training loads, having a direct impact on adaptive patterns. Exercise volume during resistance training has been conventionally evaluated as a total number of repetitions performed in each set, regardless of the time and speed of performing individual exercises. The aim of this study was to evaluate the effect of varied tempos i.e. regular (REG) 2/0/2/0, medium (MED) 5/0/3/0 and slow (SLO) 6/0/4/0 during resistance exercise on training volume, based on the total number of performed repetitions (REPsum1-5) and time under tension (TUTsum1-5). Significant differences in TUT (s) were found in particular sets for each tempo of 2/0/2/0, 5/0/3/0 and 6/0/4/0 (p < 0.001). The ANOVA also revealed substantial differences in the REP for individual sets (p < 0.001). Post-hoc analyses showed that TUT for each set and total TUTsum1-5 were significantly higher in the 5/0/3/0 and 6/0/4/0 tempos compared to 2/0/2/0 (p < 0.001). REP was significantly higher for the 2/0/2/0 tempo compared to 5/0/3/0 and 6/0/4/0 tempo in each set. Total REPsum1-5, TUTsum1-5 between 5/0/3/0 and 6/0/4/0 tempos were not significantly different. The main finding of this study is that the movement tempo in strength training impacts training volume, both in terms of repetitions and total time under tension.


Placebo Effect of Caffeine on Maximal Strength and Strength Endurance in Healthy Recreationally Trained Women Habituated to Caffeine.

  • Aleksandra Filip-Stachnik‎ et al.
  • Nutrients‎
  • 2020‎

By using deceptive experimental designs, several investigations have observed that trained individuals may increase their performance when told they were given caffeine, when in fact they received a placebo (i.e., the placebo effect of caffeine). However, most of these investigations on the placebo effect of caffeine used individuals with low caffeine consumption or did not report habitual caffeine consumption, especially in studies analyzing resistance-based exercise. Hence, it is unknown if habitual caffeine consumers benefit from the placebo effect of caffeine on exercise performance. Thus, the aim of the present study was to analyze the placebo effect of caffeine on maximal strength and strength-endurance performance during the bench press exercise (BP) in women with mild-moderate daily consumption of caffeine.


Significant Predictors of Sports Performance in Elite Men Judo Athletes Based on Multidimensional Regression Models.

  • Maciej Kostrzewa‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

This research aimed to identify the most significant predictors of sports level using regression modeling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: