Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes.

  • Tongqing Zhou‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from ~0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes.


Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection.

  • Zanele Ditse‎ et al.
  • mSphere‎
  • 2020‎

Analysis of breakthrough HIV-1 infections could elucidate whether prior vaccination primes relevant immune responses. Here, we measured HIV-specific antibody responses in 14 South African volunteers who acquired HIV infection after participating in phase 1/2 trials of envelope-containing immunogens. Serum samples were collected annually following HIV-1 infection from participants in trials HVTN 073 (subtype C, DNA/MVA, phase 1 trial, n = 1), HVTN 086 (subtype C, DNA/MVA/gp140 protein, phase 1 trial, n = 2), and HVTN 204 (multisubtype, DNA/adenovirus serotype 5 [Ad5], phase 2 trial, n = 7) and 4 placebo recipients. Binding and neutralizing antibody responses to Env proteins and peptides were determined pre- and post-HIV infection using an enzyme-linked immunosorbent assay and the TZM-bl cell neutralization assay, respectively. HIV-infected South African individuals served as unvaccinated controls. Binding antibodies to gp41, V3, V2, the membrane-proximal external region (MPER), and the CD4 binding site were detected from the first year of HIV-1 subtype C infection, and the levels were similar in vaccinated and placebo recipients. Neutralizing antibody responses against tier 1A viruses were detected in all participants, with the highest titers being to a subtype C virus, MW965.26. No responses were observed just prior to infection, indicating that vaccine-primed HIV-specific antibodies had waned. Sporadic neutralization activity against tier 2 isolates was observed after 2 to 3 years of HIV infection, but these responses were similar in the vaccinated and placebo groups as well as the unvaccinated controls. Our data suggest that prior vaccination with these immunogens did not alter the antibody responses to HIV-1 infection, nor did it accelerate the development of HIV neutralization breadth.IMPORTANCE There is a wealth of information on HIV-specific vaccine-induced immune responses among HIV-uninfected participants; however, data on immune responses among participants who acquire HIV after vaccination are limited. Here we show that HIV-specific binding antibody responses in individuals with breakthrough HIV infections were not affected by prior vaccination with HIV envelope-containing immunogens. We also found that these vectored vaccines did not prime tier 2 virus-neutralizing antibody responses, which are thought to be required for prevention against HIV acquisition, or accelerate the development of neutralization breadth. Although this study is limited, such studies can provide insights into whether vaccine-elicited antibody responses are boosted by HIV infection to acquire broader neutralizing activity, which may help to identify antigens relevant to the design of more effective vaccines.


WNT/beta-catenin signaling is involved in regulation of osteoclast differentiation by human immunodeficiency virus protease inhibitor ritonavir: relationship to human immunodeficiency virus-linked bone mineral loss.

  • Rozbeh Modarresi‎ et al.
  • The American journal of pathology‎
  • 2009‎

Untreated human immunodeficiency virus (HIV) infection is accompanied by reduced bone mineral density, which appears to be exacerbated by certain HIV protease inhibitors (PIs). The mechanisms leading to this apparent paradox, however, remain unclear. We have previously shown that, the HIV envelope glycoprotein gp120 used at levels similar those in plasmas of untreated HIV(+) patients, induced expression of the osteoclast (OC) differentiation factor RANKL in CD4+ T cells. In addition, the HIV PI ritonavir abrogated the interferon-gamma-mediated degradation of the RANKL nuclear adapter protein TRAF6, a physiological block to RANKL activity. Here, using oligonucleotide microarrays and quantitative polymerase chain reaction, we explored potential upstream mechanisms for these effects. Ritonavir, but not the HIV PIs indinavir or nelfinavir, up-regulated the production of transcripts for OC growth factors and the non-canonical Wnt Proteins 5B and 7B as well as activated promoters of nuclear factor-kappaB signaling, but suppressed genes involved in canonical Wnt signaling. Similarly, ritonavir blocked the cytoplasmic to nuclear translocation of beta-catenin, the molecular node of the Wnt signaling pathway, in association with enhanced beta-catenin ubiquitination. Exposure of OC precursors to LiCl, an inhibitor of the canonical Wnt antagonist GSK-3beta, suppressed OC differentiation, as did adenovirus-mediated overexpression of beta-catenin. These data identify, for the first time, a biologically relevant role for Wnt signaling via beta-catenin in isolated OC precursors and the modulation of Wnt signaling by ritonavir. The reversal of these ritonavir-mediated changes by interferon-gamma provides a model for possible intervention in this metabolic complication of HIV therapy.


Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy.

  • Jia Sun‎ et al.
  • Mediators of inflammation‎
  • 2017‎

Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS.


Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes.

  • Tongqing Zhou‎ et al.
  • Cell reports‎
  • 2020‎

Biotin-labeled molecular probes, comprising specific regions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. Here, we design constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions include full-length spike ectodomain as well as various subregions, and we also design mutants that eliminate recognition of the angiotensin-converting enzyme 2 (ACE2) receptor. Yields of biotin-labeled probes from transient transfection range from ∼0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes are characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe is determined by cryoelectron microscopy. We also characterize antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike ectodomain probes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: