Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Controllable Iterative β-Glucosylation from UDP-Glucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics.

  • Jihye Jung‎ et al.
  • Journal of agricultural and food chemistry‎
  • 2021‎

Glycosylation in natural product metabolism and xenobiotic detoxification often leads to disaccharide-modified metabolites. The chemical synthesis of such glycosides typically separates the glycosylation steps in space and time. The option to perform the two-step glycosylation in one pot, and catalyzed by a single permissive enzyme, is interesting for a facile access to disaccharide-modified products. Here, we reveal the glycosyltransferase GT1 from Bacillus cereus (BcGT1; gene identifier: KT821092) for iterative O-β-glucosylation from uridine 5'-diphosphate (UDP)-glucose to form a β-linked disaccharide of different metabolites, including a C15 hydroxylated detoxification intermediate of the agricultural herbicide cinmethylin (15HCM). We identify thermodynamic and kinetic requirements for the selective formation of the disaccharide compared to the monosaccharide-modified 15HCM. As shown by NMR and high-resolution MS, β-cellobiosyl and β-gentiobiosyl groups are attached to the aglycone's O15 in a 2:1 ratio. Glucosylation reactions on methylumbelliferone and 4-nitrophenol involve reversible glycosyl transfer from and to UDP as well as UDP-glucose hydrolysis, both catalyzed by BcGT1. Collectively, this study delineates the iterative β-d-glucosylation of aglycones by BcGT1 and demonstrates applicability for the programmable one-pot synthesis of disaccharide-modified 15HCM.


Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases.

  • Jihye Jung‎ et al.
  • Journal of agricultural and food chemistry‎
  • 2021‎

Cinmethylin is a well-known benzyl-ether derivative of the natural terpene 1,4-cineole that is used industrially as a pre-emergence herbicide in grass weed control for crop protection. Cinmethylin detoxification in plants has not been reported, but in animals, it prominently involves hydroxylation at the benzylic C15 methyl group. Here, we show enzymatic β-glycosylation of synthetic 15-hydroxy-cinmethylin to prepare a putative phase II detoxification metabolite of the cinmethylin in plants. We examined eight Leloir glycosyltransferases for reactivity with 15-hydroxy cinmethylin and revealed the selective formation of 15-hydroxy cinmethylin β-d-glucoside from uridine 5'-diphosphate (UDP)-glucose by the UGT71E5 from safflower (Carthamus tinctorius). The UGT71E5 showed a specific activity of 431 mU/mg, about 300-fold higher than that of apple (Malus domestica) UGT71A15 that also performed the desired 15-hydroxy cinmethylin mono-glycosylation. Bacterial glycosyltransferases (OleD from Streptomyces antibioticus, 2.9 mU/mg; GT1 from Bacillus cereus, 60 mU/mg) produced mixtures of 15-hydroxy cinmethylin mono- and disaccharide glycosides. Using UDP-glucose recycling with sucrose synthase, 15-hydroxy cinmethylin conversion with UGT71E5 efficiently provided the β-mono-glucoside (≥95% yield; ∼9 mM) suitable for biological studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: