Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein.

  • Bernd Simon‎ et al.
  • Structure (London, England : 1993)‎
  • 2011‎

Piwi proteins are germline-specific Argonautes that associate with small RNAs called Piwi-interacting RNAs (piRNAs), and together with these RNAs are implicated in transposon silencing. The PAZ domain of Argonaute proteins recognizes the 3'-end of the RNA, which in the case of piRNAs is invariably modified with a 2'-O-methyl group. Here, we present the solution structure of the PAZ domain from the mouse Piwi protein, MIWI, in complex with an 8-mer piRNA mimic. The methyl group is positioned in a hydrophobic cavity made of conserved amino acids from strand β7 and helix α3, where it is contacted by the side chain of methionine-382. Our structure is similar to that of Ago-PAZ, but subtle differences illustrate how the PAZ domain has evolved to accommodate distinct 3' ends from a variety of RNA substrates.


Structural insight into poly(A) binding and catalytic mechanism of human PARN.

  • Mousheng Wu‎ et al.
  • The EMBO journal‎
  • 2005‎

Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.


Inflammaging impairs peripheral nerve maintenance and regeneration.

  • Robert Büttner‎ et al.
  • Aging cell‎
  • 2018‎

The regenerative capacity of peripheral nerves declines during aging, contributing to the development of neuropathies, limiting organism function. Changes in Schwann cells prompt failures in instructing maintenance and regeneration of aging nerves; molecular mechanisms of which have yet to be delineated. Here, we identified an altered inflammatory environment leading to a defective Schwann cell response, as an underlying mechanism of impaired nerve regeneration during aging. Chronic inflammation was detected in intact uninjured old nerves, characterized by increased macrophage infiltration and raised levels of monocyte chemoattractant protein 1 (MCP1) and CC chemokine ligand 11 (CCL11). Schwann cells in the old nerves appeared partially dedifferentiated, accompanied by an activated repair program independent of injury. Upon sciatic nerve injury, an initial delayed immune response was followed by a persistent hyperinflammatory state accompanied by a diminished repair process. As a contributing factor to nerve aging, we showed that CCL11 interfered with Schwann cell differentiation in vitro and in vivo. Our results indicate that increased infiltration of macrophages and inflammatory signals diminish regenerative capacity of aging nerves by altering Schwann cell behavior. The study identifies CCL11 as a promising target for anti-inflammatory therapies aiming to improve nerve regeneration in old age.


Selective termination of lncRNA transcription promotes heterochromatin silencing and cell differentiation.

  • Leila Touat-Todeschini‎ et al.
  • The EMBO journal‎
  • 2017‎

Long non-coding RNAs (lncRNAs) regulating gene expression at the chromatin level are widespread among eukaryotes. However, their functions and the mechanisms by which they act are not fully understood. Here, we identify new fission yeast regulatory lncRNAs that are targeted, at their site of transcription, by the YTH domain of the RNA-binding protein Mmi1 and degraded by the nuclear exosome. We uncover that one of them, nam1, regulates entry into sexual differentiation. Importantly, we demonstrate that Mmi1 binding to this lncRNA not only triggers its degradation but also mediates its transcription termination, thus preventing lncRNA transcription from invading and repressing the downstream gene encoding a mitogen-activated protein kinase kinase kinase (MAPKKK) essential to sexual differentiation. In addition, we show that Mmi1-mediated termination of lncRNA transcription also takes place at pericentromeric regions where it contributes to heterochromatin gene silencing together with RNA interference (RNAi). These findings reveal an important role for selective termination of lncRNA transcription in both euchromatic and heterochromatic lncRNA-based gene silencing processes.


Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries.

  • Mikhail S Klenov‎ et al.
  • Nucleic acids research‎
  • 2014‎

The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.


The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b.

  • Katrin Haupt‎ et al.
  • PLoS pathogens‎
  • 2008‎

The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1) from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG) as a ligand that interacts with Factor H by a-to our knowledge-new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite SbiratioC3ratioFactor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and beta(2)-glycoprotein I and interferes with innate immune recognition.


Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b.

  • Tina K Koch‎ et al.
  • PloS one‎
  • 2012‎

Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions.


Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19.

  • Anne Hollerbach‎ et al.
  • Journal of thrombosis and haemostasis : JTH‎
  • 2021‎

Coronavirus disease 19 (COVID-19)-associated coagulopathy is a hallmark of disease severity and poor prognosis. The key manifestations of this prothrombotic syndrome-microvascular thrombosis, stroke, and venous and pulmonary clots-are also observed in severe and catastrophic antiphospholipid syndrome. Antiphospholipid antibodies (aPL) are detectable in COVID-19 patients, but their association with the clinical course of COVID-19 remains unproven.


Proteomic analysis of peripheral nerve myelin during murine aging.

  • Dario Lucas Helbing‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2023‎

Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: