Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Probing the DNA structural requirements for facilitated diffusion.

  • Mark Hedglin‎ et al.
  • Biochemistry‎
  • 2015‎

DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein.


Defining the functional footprint for recognition and repair of deaminated DNA.

  • Michael R Baldwin‎ et al.
  • Nucleic acids research‎
  • 2012‎

Spontaneous deamination of DNA is mutagenic, if it is not repaired by the base excision repair (BER) pathway. Crystallographic data suggest that each BER enzyme has a compact DNA binding site. However, these structures lack information about poorly ordered termini, and the energetic contributions of specific protein-DNA contacts cannot be inferred. Furthermore, these structures do not reveal how DNA repair intermediates are passed between enzyme active sites. We used a functional footprinting approach to define the binding sites of the first two enzymes of the human BER pathway for the repair of deaminated purines, alkyladenine DNA glycosylase (AAG) and AP endonuclease (APE1). Although the functional footprint for full-length AAG is explained by crystal structures of truncated AAG, the footprint for full-length APE1 indicates a much larger binding site than is observed in crystal structures. AAG turnover is stimulated in the presence of APE1, indicating rapid exchange of AAG and APE1 at the abasic site produced by the AAG reaction. The coordinated reaction does not require an extended footprint, suggesting that each enzyme engages the site independently. Functional footprinting provides unique information relative to traditional footprinting approaches and is generally applicable to any DNA modifying enzyme or system of enzymes.


Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes.

  • Michael R Baldwin‎ et al.
  • Biochemistry‎
  • 2007‎

Botulinum neurotoxins (BoNTs) elicit flaccid paralysis through cleavage of SNARE proteins within peripheral neurons. There are seven serotypes of the BoNTs, termed A-G, which differ in the SNARE protein and/or site that is cleaved. BoNTs are single-chain toxins that comprise an N-terminal zinc metalloprotease domain that is disulfide linked to the C-terminal translocation/receptor binding domain. SV2 and synaptotagmin have been identified as receptors for BoNT serotypes A and B, respectively. Using affinity chromatography, BoNTs A and B were observed to bind synaptic vesicle protein complexes in synaptosome lysates. Tandem LC-MS/MS identified SV2, synaptotagmin I, synaptophysin, vesicle-associated membrane protein 2 (VAMP2), and the vacuolar proton pump as components of the BoNT-receptor complex. Density gradient analysis showed that BoNT serotypes A and B exhibited unique interactions with the synaptic vesicle protein complexes. The association of BoNT serotypes A and B with synaptic vesicle protein complexes implicates a physiological role for protein complexes in synaptic vesicle biology and provides insight into the interactions of BoNT and neuronal receptors.


Two-tiered enforcement of high-fidelity DNA ligation.

  • Percy P Tumbale‎ et al.
  • Nature communications‎
  • 2019‎

DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.


Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast.

  • Suzanne J Admiraal‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.


The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms.

  • Pierce T O'Neil‎ et al.
  • Frontiers in molecular biosciences‎
  • 2018‎

The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states.


Binding and entry of Clostridium difficile toxin B is mediated by multiple domains.

  • Jared S Manse‎ et al.
  • FEBS letters‎
  • 2015‎

Clostridium difficile is responsible for a number of serious gastrointestinal diseases caused primarily by two exotoxins, TcdA and TcdB. These toxins enter host cells by binding unique receptors, at least partially via their combined repetitive oligopeptides (CROPs) domains. Our study investigated structural determinants necessary for binding and entry of TcdB. Deletion analyses identified TcdB residues 1372-1493 as essential for cytotoxicity in three cell lines. Consistent with this observation, overlapping TcdB fragments (residues 1372-1848, 1372-1493 and 1493-1848) were able to independently bind cells. Our data provide new evidence supporting a more complex model of clostridial glucosylating toxin uptake than previously suggested.


Human DNA ligases I and III have stand-alone end-joining capability, but differ in ligation efficiency and specificity.

  • Justin R McNally‎ et al.
  • Nucleic acids research‎
  • 2023‎

Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.


Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping.

  • Jenna M Hendershot‎ et al.
  • Nucleic acids research‎
  • 2014‎

Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping.


Mechanisms of glycosylase induced genomic instability.

  • Daniel E Eyler‎ et al.
  • PloS one‎
  • 2017‎

Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) bases, altering repeat length. To directly test the role of base excision in AAG-induced mutagenesis, we conducted mutation accumulation experiments in yeast overexpressing different variants of AAG and detected mutations via high-depth genome resequencing. We also developed a new software tool, hp_caller, to perform accurate genotyping at homopolymeric repeat loci. Overexpression of wild-type AAG elevated indel mutations in homopolymeric sequences distributed throughout the genome. However, catalytically inactive variants (E125Q/E125A) caused equal or greater increases in frameshift mutations. These results disprove the hypothesis that base excision is the key step in mutagenesis by overexpressed wild-type AAG. Instead, our results provide additional support for the previously published model wherein overexpressed AAG interferes with the mismatch repair (MMR) pathway. In addition to the above results, we observed a dramatic mutator phenotype for N169S AAG, which has increased rates of excision of undamaged purines. This mutant caused a 10-fold increase in point mutations at G:C base pairs and a 50-fold increase in frameshifts in A:T homopolymers. These results demonstrate that it is necessary to consider the relative activities and abundance of many DNA replication and repair proteins when considering mutator phenotypes, as they are relevant to the development of cancer and its resistance to treatment.


UBCH5 Family Members Differentially Impact Stabilization of Mutant p53 via RNF128 Iso1 During Barrett's Progression to Esophageal Adenocarcinoma.

  • Paramita Ray‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

TP53 mutations underlie Barrett's esophagus (BE) progression to dysplasia and cancer. During BE progression, the ubiquitin ligase (E3) RNF128/GRAIL switches expression from isoform 2 (Iso2) to Iso1, stabilizing mutant p53. However, the ubiquitin-conjugating enzyme (E2) that partners with Iso1 to stabilize mutant p53 is unknown.


HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes.

  • Christopher Schwake‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Malaria and babesiosis are bloodborne protozoan infections for which the emergence of drug-resistant strains poses a threat. Our previous phage display cDNA screens established the essentiality of Plasmodium falciparum signal peptide peptidase (SPP) in asexual development at the blood stage of malaria infection. Given the structural similarities between SPP inhibitors and HIV protease inhibitors, we screened ten HIV protease inhibitors and selected Lopinavir and Atazanavir for their ability to inhibit PfSPP activity. Using a transcription-based assay, we observed that Lopinavir inhibits both parasite-and host-derived SPP activities whereas Atazanavir inhibited only parasite derived SPP activity. Consistent with their inhibitory effect on Plasmodium growth, both Lopinavir and Atazanavir strongly inhibited intraerythrocytic Babesia microti growth ex vivo. Moreover, Lopinavir prevented the steep rise in Babesia microti parasitemia typically observed in rag1-deficient mice. Our data provide first evidence that inhibition of parasite-derived SPPs by HIV protease inhibitors offers a promising therapeutic avenue for the treatment of severe babesiosis and infections caused by other Apicomplexa parasites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: