Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Novel svVEGF isoforms from Macrovipera lebetina venom interact with neuropilins.

  • Zohra Aloui‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Increased vascular permeability and vasodilation are responses usually elicited by snake envenomation. In this report, we isolated from Macroviperalebetina venom two protein groups designated IC1 (Increasing Capillary1) and IC2 based on their activities on capillary permeability. Mass spectrometry analysis showed that IC1 contained four major proteins of 23,650, 24,306, 24,589 and 24,718Da, whereas IC2 contained three major proteins of 25,101, 25,194 and 25,298Da. N-terminal amino-acid sequencing revealed that IC1 and IC2 belong to the snake venom VEGF (svVEGF) family. IC1 and IC2 had a marked specificity for VEGFR-2, with affinities in the nanomolar range. Interestingly, they also bind to NRP1 and NRP2, with affinities in the micromolar range. This is the first report demonstrating that M. lebetina encodes several distinct svVEGFs, endowed with a capacity to interact with neuropilins. IC1 and IC2 could be valuable tools to understand the molecular properties of angiogenic factors and their receptors.


Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo.

  • Hironao Nakayama‎ et al.
  • Scientific reports‎
  • 2015‎

Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications.


Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins.

  • Hironao Nakayama‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1(+)) endothelial cells (designated as GLUT1(sel) cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH.


Gleevec/imatinib, an ABL2 kinase inhibitor, protects tumor and endothelial cells from semaphorin-induced cytoskeleton collapse and loss of cell motility.

  • Vera Procaccia‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Class 3 semaphorins are axonal guidance mediators and regulators of angiogenesis and tumor progression. Semaphorin 3A and 3F (SEMA3A&F) act by depolymerizing F-actin, resulting in cytoskeleton collapse. A key signaling step is that SEMA3A&F activates ABL2 tyrosine kinase, which activates p190RhoGAP, which in turn inactivates RhoA, thereby diminishing stress fiber formation and ensuing cell migration. We now demonstrate that Gleevec (imatinib, STI571), an ABL2 tyrosine kinase inhibitor, abrogates SEMA3A&F-induced stress fiber loss in glioblastoma cells and endothelial cells and diminishes their ability to inhibit migration. On the other hand, Sutent (sunitinib), a receptor tyrosine kinase inhibitor, did not rescue SEMA3A&F-induced collapsing activity. These results describe a novel property of Gleevec, its ability to antagonize semaphorins.


Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease.

  • Dolores Di Vizio‎ et al.
  • The American journal of pathology‎
  • 2012‎

Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-μm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 μm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.


RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription.

  • Damien Gerald‎ et al.
  • Nature communications‎
  • 2013‎

Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.


Increased smooth muscle contractility in mice deficient for neuropilin 2.

  • Diane R Bielenberg‎ et al.
  • The American journal of pathology‎
  • 2012‎

Neuropilins (NRPs) are transmembrane receptors that bind class 3 semaphorins and VEGF family members to regulate axon guidance and angiogenesis. Although expression of NRP1 by vascular smooth muscle cells (SMCs) has been reported, NRP function in smooth muscle (SM) in vivo is unexplored. Using Nrp2(+/LacZ) and Nrp2(+/gfp) transgenic mice, we observed robust and sustained expression of Nrp2 in the SM compartments of the bladder and gut, but no expression in vascular SM, skeletal muscle, or cardiac muscle. This expression pattern was recapitulated in vitro using primary human SM cell lines. Alterations in cell morphology after treatment of primary visceral SMCs with the NRP2 ligand semaphorin-3F (SEMA3F) were accompanied by inhibition of RhoA activity and myosin light chain phosphorylation, as well as decreased cytoskeletal stiffness. Ex vivo contractility testing of bladder muscle strips exposed to electrical stimulation or soluble agonists revealed enhanced tension generation of tissues from mice with constitutive or SM-specific knockout of Nrp2, compared with controls. Mice lacking Nrp2 also displayed increased bladder filling pressures, as assessed by cystometry in conscious mice. Together, these findings identify Nrp2 as a mediator of prorelaxant stimuli in SMCs and suggest a novel function for Nrp2 as a regulator of visceral SM contractility.


Calcification of multipotent prostate tumor endothelium.

  • Andrew C Dudley‎ et al.
  • Cancer cell‎
  • 2008‎

Solid tumors require new blood vessels for growth and metastasis, yet the biology of tumor-specific endothelial cells is poorly understood. We have isolated tumor endothelial cells from mice that spontaneously develop prostate tumors. Clonal populations of tumor endothelial cells expressed hematopoietic and mesenchymal stem cell markers and differentiated to form cartilage- and bone-like tissues. Chondrogenic differentiation was accompanied by an upregulation of cartilage-specific col2a1 and sox9, whereas osteocalcin and the metastasis marker osteopontin were upregulated during osteogenic differentiation. In human and mouse prostate tumors, ectopic vascular calcification was predominately luminal and colocalized with the endothelial marker CD31. Thus, prostate tumor endothelial cells are atypically multipotent and can undergo a mesenchymal-like transition.


Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice.

  • Jaemin Lee‎ et al.
  • Nature medicine‎
  • 2016‎

The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules that have mRNA expression profiles similar to that of celastrol, a naturally occurring compound that we previously identified as a leptin sensitizer. Through this process, we identified another naturally occurring compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin-A treatment of mice with diet-induced obesity (DIO) resulted in a 20-25% reduction of body weight, while also decreasing obesity-associated abnormalities, including hepatic steatosis. Withaferin-A treatment marginally affected the body weight of ob/ob and db/db mice, both of which are deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism that occur independently of its leptin-sensitizing effect. Our results show that the metabolic abnormalities of DIO can be mitigated by sensitizing animals to endogenous leptin, and they indicate that withaferin A is a potential leptin sensitizer with additional antidiabetic actions.


NF-κB determines Paneth versus goblet cell fate decision in the small intestine.

  • Cristina Brischetto‎ et al.
  • Development (Cambridge, England)‎
  • 2021‎

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1.

  • Damien Bates‎ et al.
  • Developmental biology‎
  • 2003‎

Peripheral nerves and blood vessels have similar patterns in quail forelimb development. Usually, nerves extend adjacent to existing blood vessels, but in a few cases, vessels follow nerves. Nerves have been proposed to follow vascular smooth muscle, endothelium, or their basal laminae. Focusing on the major axial blood vessels and nerves, we found that when nerves grow into forelimbs at E3.5-E5, vascular smooth muscle was not detectable by smooth muscle actin immunoreactivity. Additionally, transmission electron microscopy at E5.5 confirmed that early blood vessels lacked smooth muscle and showed that the endothelial cell layer lacks a basal lamina, and we did not observe physical contact between peripheral nerves and these endothelial cells. To test more generally whether lack of nerves affected blood vessel patterns, forelimb-level neural tube ablations were performed at E2 to produce aneural limbs; these had completely normal vascular patterns up to at least E10. To test more generally whether vascular perturbation affected nerve patterns, VEGF(165), VEGF(121), Ang-1, and soluble Flt-1/Fc proteins singly and in combination were focally introduced via beads implanted into E4.5 forelimbs. These produced significant alterations to the vascular patterns, which included the formation of neo-vessels and the creation of ectopic avascular spaces at E6, but in both under- and overvascularized forelimbs, the peripheral nerve pattern was normal. The spatial distribution of semaphorin3A protein immunoreactivity was consistent with a negative regulation of neural and/or vascular patterning. Semaphorin3A bead implantations into E4.5 forelimbs caused failure of nerves and blood vessels to form and to deviate away from the bead. Conversely, semaphorin3A antibody bead implantation was associated with a local increase in capillary formation. Furthermore, neural tube electroporation at E2 with a construct for the soluble form of neuropilin-1 caused vascular malformations and hemorrhage as well as altered nerve trajectories and peripheral nerve defasciculation at E5-E6. These results suggest that neurovascular congruency does not arise from interdependence between peripheral nerves and blood vessels, but supports the hypothesis that it arises by a shared patterning mechanism that utilizes semaphorin3A.


Inhibition of zebrafish epidermal growth factor receptor activity results in cardiovascular defects.

  • Katsutoshi Goishi‎ et al.
  • Mechanisms of development‎
  • 2003‎

The physiological role of any of the epidermal growth factor (EGF) receptor tyrosine kinases has yet to be determined in zebrafish. We isolated a zebrafish homologue of EGFR (egfr) that shows a 63% amino acid overall identity to human EGFR but with 90% amino acid identity in the kinase domain. Whole mount in situ hybridization showed ubiquitous distribution of egfr transcripts during gastrulation, somitogenesis and later stages. When expressed in Chinese hamster ovary cells, zebrafish Egfr was a functional receptor that responded to EGF by receptor tyrosine phosphorylation and activation of MAP kinase. The function of zebrafish Egfr in vivo was determined by inhibiting its activity using EGFR kinase inhibitors and antisense morpholinos (MO), which inhibited Egfr kinase activity and translation of egfr messenger RNA into protein, respectively. The zebrafish is a particularly excellent model for studying cardiovascular development because zebrafish are transparent allowing direct visualization of the heart and circulation in the blood vessels. Inhibition of zebrafish Egfr activity in vivo impeded blood flow via the outflow tract into the aorta and impeded circulation in the axial and intersegmental vessels by 80 h post-fertilization. Analysis of the heart showed that the heart chambers and pericardial sacs were dilated and the outflow tracts were narrowed. Together these results suggested that zebrafish Egfr has a cardiovascular function in the developing zebrafish that is required for normal circulation.


Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency.

  • Patrick Mucka‎ et al.
  • The American journal of pathology‎
  • 2016‎

The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.


VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells.

  • Ayumi Yoshida‎ et al.
  • Biology open‎
  • 2015‎

Neuropilin-1 (NRP1) has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.


Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells.

  • Camille Grandclement‎ et al.
  • PloS one‎
  • 2011‎

Neuropilins, initially characterized as neuronal receptors, act as co-receptors for cancer related growth factors and were recently involved in several signaling pathways leading to cytoskeletal organization, angiogenesis and cancer progression. Then, we sought to investigate the ability of neuropilin-2 to orchestrate epithelial-mesenchymal transition in colorectal cancer cells. Using specific siRNA to target neuropilin-2 expression, or gene transfer, we first observed that neuropilin-2 expression endows HT29 and Colo320 for xenograft formation. Moreover, neuropilin-2 conferred a fibroblastic-like shape to cancer cells, suggesting an involvement of neuropilin-2 in epithelial-mesenchymal transition. Indeed, the presence of neuropilin-2 in colorectal carcinoma cell lines was correlated with loss of epithelial markers such as cytokeratin-20 and E-cadherin and with acquisition of mesenchymal molecules such as vimentin. Furthermore, we showed by surface plasmon resonance experiments that neuropilin-2 is a receptor for transforming-growth factor-β1. The expression of neuropilin-2 on colon cancer cell lines was indeed shown to promote transforming-growth factor-β1 signaling, leading to a constitutive phosphorylation of the Smad2/3 complex. Treatment with specific TGFβ-type1 receptor kinase inhibitors restored E-cadherin levels and inhibited in part neuropilin-2-induced vimentin expression, suggesting that neuropilin-2 cooperates with TGFβ-type1 receptor to promote epithelial-mesenchymal transition in colorectal cancer cells. Our results suggest a direct role of NRP2 in epithelial-mesenchymal transition and highlight a cross-talk between neuropilin-2 and TGF-β1 signaling to promote cancer progression. These results suggest that neuropilin-2 fulfills all the criteria of a therapeutic target to disrupt multiple oncogenic functions in solid tumors.


Neuropilin-1a is involved in trunk motor axon outgrowth in embryonic zebrafish.

  • Julia Feldner‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2005‎

Neuropilin-1, a receptor for axon-repellent semaphorins and vascular endothelial growth factor (VEGF), functions both in angiogenesis and axon growth. Here, we show strong expression of neuropilin-1a in primary motor neurons in the trunk of embryonic zebrafish. Reducing the expression of neuropilin-1a using antisense morpholino oligonucleotides induced aberrant branching of motor nerves, additional exit points of motor nerves from the spinal cord, and migration of neurons out of the spinal cord along the motor axon pathway in a dose-dependent manner. These phenotypes could be partially rescued by co-injecting neuropilin-1a mRNA. Other axons in the spinal cord and head appeared unaffected by the morpholino treatment. In addition, neuropilin-1a morpholino treatment disturbed normal formation of blood vessels in the trunk of 24 hours postfertilization embryos, as shown by microangiography. Morpholinos to VEGF also disturbed formation of blood vessels but did not affect motor axons, indicating that correct formation of blood vessels is not needed for the growth of primary motor axons. Morpholinos to the semaphorin 3A homologs semaphorin 3A1 and semaphorin 3A2 also had no effect on motor axon growth. However, combined injections of neuropilin-1a morpholino, at a concentration that did not elicit axonal aberrations when injected alone, with VEGF, semaphorin 3A1, or semaphorin 3A2 morpholinos synergistically increased the proportion of embryos showing aberrant motor axon growth. Thus, neuropilin-1a in primary motor neurons may integrate signals from several ligands and is needed for proper segmental growth of primary motor nerves in zebrafish.


PGC-1α functions as a co-suppressor of XBP1s to regulate glucose metabolism.

  • Jaemin Lee‎ et al.
  • Molecular metabolism‎
  • 2018‎

Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism.


The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis.

  • Nicole A Hofmann‎ et al.
  • British journal of pharmacology‎
  • 2015‎

Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis.


Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus.

  • Joon W Shim‎ et al.
  • Scientific reports‎
  • 2016‎

Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.


Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma.

  • Matija Snuderl‎ et al.
  • Cell‎
  • 2013‎

Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: