Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Internal organization of medial rectus and inferior rectus muscle neurons in the C group of the oculomotor nucleus in monkey.

  • Xiaofang Tang‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

Mammalian extraocular muscles contain singly innervated twitch muscle fibers (SIF) and multiply innervated nontwitch muscle fibers (MIF). In monkey, MIF motoneurons lie around the periphery of oculomotor nuclei and have premotor inputs different from those of the motoneurons inside the nuclei. The most prominent MIF motoneuron group is the C group, which innervates the medial rectus (MR) and inferior rectus (IR) muscle. To explore the organization of both cell groups within the C group, we performed small injections of choleratoxin subunit B into the myotendinous junction of MR or IR in monkeys. In three animals the IR and MR myotendinous junction of one eye was injected simultaneously with different tracers (choleratoxin subunit B and wheat germ agglutinin). This revealed that both muscles were supplied by two different, nonoverlapping populations in the C group. The IR neurons lie adjacent to the dorsomedial border of the oculomotor nucleus, whereas MR neurons are located farther medially. A striking feature was the differing pattern of dendrite distribution of both cell groups. Whereas the dendrites of IR neurons spread into the supraoculomotor area bilaterally, those of the MR neurons were restricted to the ipsilateral side and sent a focused bundle dorsally to the preganglionic neurons of the Edinger-Westphal nucleus, which are involved in the "near response." In conclusion, MR and IR are innervated by independent neuron populations from the C group. Their dendritic branching pattern within the supraoculomotor area indicates a participation in the near response providing vergence but also reflects their differing functional roles.


Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST.

  • Shaun L Cloherty‎ et al.
  • Frontiers in systems neuroscience‎
  • 2015‎

Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd) of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise-from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccades-saccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons' receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.


Monocular visual deprivation in macaque monkeys: a profile in the gene expression of lateral geniculate nucleus by laser capture microdissection.

  • Georgiana Cheng‎ et al.
  • Molecular vision‎
  • 2008‎

Amblyopia is the most common cause of visual impairment in children. Early detection of amblyopia and subsequent intervention are vital in preventing visual loss. Understanding the molecular pathogenesis of amblyopia would greatly facilitate development of therapeutic interventions. An animal model of amblyopia induced by monocular vision deprivation has been extensively studied in terms of anatomic and physiologic alterations that affect visual pathways. However, the molecular events underlying these changes are poorly understood. This study aimed to characterize changes of gene expression profiles in the lateral geniculate nucleus (LGN) associated with amblyopia induced by monocular visual deprivation.


Improvement of Eye Alignment in Adult Strabismic Monkeys by Sustained IGF-1 Treatment.

  • Linda K McLoon‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2016‎

The goal of this study was to determine if continuous application of insulin-like growth factor-1 (IGF-1) could improve eye alignment of adult strabismic nonhuman primates and to assess possible mechanisms of effect.


Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey.

  • Christina Zeeh‎ et al.
  • Frontiers in neuroanatomy‎
  • 2015‎

In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence.


Effects of saccades on visual processing in primate MSTd.

  • Shaun L Cloherty‎ et al.
  • Vision research‎
  • 2010‎

In surveying their visual environment, primates, including humans make frequent rapid eye movements known as saccades. Saccades result in rapid motion of the retinal image and yet this motion is not perceived. We recorded saccade-related changes in neural activity in the dorsal medial superior temporal area (MSTd) of alert macaque monkeys. We show that the spontaneous activity of neurons in MSTd is modulated around the time of saccades. Some cells show considerable suppression of spontaneous activity, while most show early and significant enhancement. While this modulation of spontaneous activity is variable, the concomitant modulation of neural responses evoked by flashed visual stimuli is uniform and stereotypical - visual responses are suppressed for stimuli presented around the time of saccades and enhanced for stimuli presented afterwards. The combined modulation of spontaneous activity and evoked visual responses likely serves to reduce the detectability of peri-saccadic stimuli and promote the perceptual awareness of visual stimuli between saccades.


Examination of feline extraocular motoneuron pools as a function of muscle fiber innervation type and muscle layer.

  • Martin O Bohlen‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

This study explores two points related to the pattern of innervation of the extraocular muscles. First, species differences exist in the location of the motoneurons supplying multiply innervated fibers (MIFs) and singly innervated fibers (SIFs) in eye muscles. MIF motoneurons are located outside the extraocular nuclei in primates, but are intermixed with SIF motoneurons within rat extraocular nuclei. To test whether this difference is related to visual capacity and frontal placement of eyes, we injected retrograde tracers into the medial rectus muscle of the cat, a highly visual nonprimate with frontally placed eyes. Distal injections labeled smaller MIF motoneurons located ventrolaterally and rostrally within the oculomotor nucleus (III). More central injections also labeled a separate population of larger cells located dorsally in III. Thus, the cat shares with the nocturnal rat the feature of having MIF motoneurons located within the bounds of III. On the other hand, just as with monkeys, cats show segregation of the MIF and SIF medial rectus motoneuron pools, albeit in a different pattern. Second, extraocular muscles are divided into two layers; the inner, global layer inserts into the sclera, and the outer, orbital layer inserts into the connective tissue pulley. To test whether these layers are supplied by anatomically discrete motoneuron pools, we injected tracer into the orbital layer of the cat lateral rectus muscle. No evidence of either morphological or distributional differences was found, suggesting that the functional differences in these layers may be due mainly to their orbital anatomy, not their innervation. J. Comp. Neurol. 525:919-935, 2017. © 2016 Wiley Periodicals, Inc.


Smooth pursuit-related information processing in frontal eye field neurons that project to the NRTP.

  • Seiji Ono‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2009‎

The cortical pursuit system begins the process of transforming visual signals into commands for smooth pursuit (SP) eye movements. The frontal eye field (FEF), located in the fundus of arcuate sulcus, is known to play a role in SP and gaze pursuit movements. This role is supported, at least in part, by FEF projections to the rostral nucleus reticularis tegmenti pontis (rNRTP), which in turn projects heavily to the cerebellar vermis. However, the functional characteristics of SP-related FEF neurons that project to rNRTP have never been described. Therefore, we used microelectrical stimulation (ES) to deliver single pulses (50-200 microA, 200-micros duration) in rNRTP to antidromically activate FEF neurons. We estimated the eye or retinal error motion sensitivity (position, velocity, and acceleration) of FEF neurons during SP using multiple linear regression modeling. FEF neurons that projected to rNRTP were most sensitive to eye acceleration. In contrast, FEF neurons not activated following ES of rNRTP were often most sensitive to eye velocity. In similar modeling studies, we found that rNRTP neurons were also biased toward eye acceleration. Therefore, our results suggest that neurons in the FEF-rNRTP pathway carry signals that could play a primary role in initiation of SP.


Eye alignment changes caused by sustained GDNF treatment of an extraocular muscle in infant non-human primates.

  • Jérome Fleuriet‎ et al.
  • Scientific reports‎
  • 2020‎

The ability of sustained treatment of a single extraocular muscle with glial cell line-derived neurotrophic factor (GDNF) to produce a strabismus in infant non-human primates was tested. Six infant non-human primates received a pellet containing GDNF, releasing 2 µg/day for 90 days, on one medial rectus muscle. Eye alignment was assessed up to 6 months. Five of the six animals showed a slow decrease in eye misalignment from the significant exotropia present at birth, ending with approximately 10° of exotropia. Controls became orthotropic. Misalignment averaged 8° three months after treatment ended. After sustained GDNF treatment, few changes were seen in mean myofiber cross-sectional areas compared to age-matched naïve controls. Neuromuscular junction number was unaltered in the medial rectus muscles, but were significantly reduced in the untreated lateral recti. Neuromuscular junctions on slow fibers became multiply innervated after this sustained GDNF treatment. Pitx2-positive cells significantly decreased in treated and contralateral medial rectus muscles. Our study suggests that balanced GDNF signaling plays a role in normal development and maintenance of orthotropia. Sustained GDNF treatment of one medial rectus muscle resulted in a measurable misalignment largely maintained 3 months after treatment ended. Structural changes suggest mechanisms for producing an imbalance in muscle function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: