Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction.

  • Netusha Thevaranjan‎ et al.
  • Cell host & microbe‎
  • 2017‎

Levels of inflammatory mediators in circulation are known to increase with age, but the underlying cause of this age-associated inflammation is debated. We find that, when maintained under germ-free conditions, mice do not display an age-related increase in circulating pro-inflammatory cytokine levels. A higher proportion of germ-free mice live to 600 days than their conventional counterparts, and macrophages derived from aged germ-free mice maintain anti-microbial activity. Co-housing germ-free mice with old, but not young, conventionally raised mice increases pro-inflammatory cytokines in the blood. In tumor necrosis factor (TNF)-deficient mice, which are protected from age-associated inflammation, age-related microbiota changes are not observed. Furthermore, age-associated microbiota changes can be reversed by reducing TNF using anti-TNF therapy. These data suggest that aging-associated microbiota promote inflammation and that reversing these age-related microbiota changes represents a potential strategy for reducing age-associated inflammation and the accompanying morbidity.


Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice.

  • Yun Han Kwon‎ et al.
  • Nature communications‎
  • 2022‎

Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.


Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis.

  • Christina L Hayes‎ et al.
  • Scientific reports‎
  • 2018‎

The intestinal barrier encompasses structural, permeability and immune aspects of the gut mucosa that, when disrupted, may contribute to chronic inflammation. Although gnotobiotic studies have demonstrated the effects of microbiota on mucosal and systemic immunity, as well as intestinal barrier architecture and innate immune characteristics, its impact on barrier function remains unclear. We compared germ-free and conventional mice, as well as mice colonized with human fecal microbiota that were followed for 21 days post-colonization. Colonic barrier structure was investigated by immunohistochemistry, molecular and electron microscopy techniques. Permeability was assessed in colon tissue by Ussing chambers, and by serum LPS and MDP detection using TLR4- and NOD2-NFκB reporter assays. Microbiota profile was determined by Illumina 16S rRNA gene sequencing. Low dose dextran sodium sulfate was administered to assess microbiota-induced barrier changes on resistance to colonic injury. Permeability to paracellular probes and mucus layer structure resembled that of conventional mice by day 7 post-colonization, coinciding with reduced claudin-1 expression and transient IL-18 production by intestinal epithelial cells. These post-colonization adaptations were associated with decreased systemic bacterial antigen exposure and reduced susceptibility to intestinal injury. In conclusion, commensal colonization promotes physiological barrier structural and functional adaptations that contribute to intestinal homeostasis.


Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation.

  • Fernando A Vicentini‎ et al.
  • Brain, behavior, and immunity‎
  • 2022‎

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota.

  • Basma A Ahmed‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

In rodents, lower brown adipose tissue (BAT) activity is associated with greater liver steatosis and changes in the gut microbiome. However, little is known about these relationships in humans. In adults (n = 60), we assessed hepatic fat and cold-stimulated BAT activity using magnetic resonance imaging and the gut microbiota with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity through the microbiota. Individuals with NAFLD (n = 29) have lower BAT activity than those without, and BAT activity is inversely related to hepatic fat content. BAT activity is not related to the characteristics of the fecal microbiota and is not transmissible through fecal transplantation to mice. Thus, low BAT activity is associated with higher hepatic fat accumulation in human adults, but this does not appear to have been mediated through the gut microbiota.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: