Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Play and tickling responses map to the lateral columns of the rat periaqueductal gray.

  • Natalie Gloveli‎ et al.
  • Neuron‎
  • 2023‎

The persistence of play after decortication points to a subcortical mechanism of play control. We found that global blockade of the rat periaqueductal gray with either muscimol or lidocaine interfered with ticklishness and play. We recorded vocalizations and neural activity from the periaqueductal gray of young, playful rats during interspecific touch, play, and tickling. Rats vocalized weakly to touch and more strongly to play and tickling. Periaqueductal gray units showed diverse but strong modulation to tickling and play. Hierarchical clustering based on neuronal responses to play and tickling revealed functional clusters mapping to different periaqueductal gray columns. Specifically, we observed play-neutral/tickling-inhibited and tickling/play-neutral units in dorsolateral and dorsomedial periaqueductal gray columns. In contrast, strongly play/tickling-excited units mapped to the lateral columns and were suppressed by anxiogenic conditions. Optogenetic inactivation of lateral periaqueductal columns disrupted ticklishness and play. We conclude that the lateral periaqueductal gray columns are decisive for play and laughter.


Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.

  • Qiusong Tang‎ et al.
  • Neuron‎
  • 2014‎

In medial entorhinal cortex, layer 2 principal cells divide into pyramidal neurons (mostly calbindin positive) and dentate gyrus-projecting stellate cells (mostly calbindin negative). We juxtacellularly labeled layer 2 neurons in freely moving animals, but small sample size prevented establishing unequivocal structure-function relationships. We show, however, that spike locking to theta oscillations allows assigning unidentified extracellular recordings to pyramidal and stellate cells with ∼83% and ∼89% specificity, respectively. In pooled anatomically identified and theta-locking-assigned recordings, nonspatial discharges dominated, and weakly hexagonal spatial discharges and head-direction selectivity were observed in both cell types. Clear grid discharges were rare and mostly classified as pyramids (19%, 19/99 putative pyramids versus 3%, 3/94 putative stellates). Most border cells were classified as stellate (11%, 10/94 putative stellates versus 1%, 1/99 putative pyramids). Our data suggest weakly theta-locked stellate border cells provide spatial input to dentate gyrus, whereas strongly theta-locked grid discharges occur mainly in hexagonally arranged pyramidal cell patches and do not feed into dentate gyrus.


Cortical fosGFP expression reveals broad receptive field excitatory neurons targeted by POm.

  • Jean-Sébastien Jouhanneau‎ et al.
  • Neuron‎
  • 2014‎

Neighboring cortical excitatory neurons show considerable heterogeneity in their responses to sensory stimulation. We hypothesized that a subset of layer 2 excitatory neurons in the juvenile (P18 to 27) mouse whisker somatosensory cortex, distinguished by expression of the activity-dependent fosGFP reporter gene, would be preferentially activated by whisker stimulation. In fact, two-photon targeted, dual whole-cell recordings showed that principal whisker stimulation elicits similar amplitude synaptic responses in fosGFP-expressing and fosGFP(-) neurons. FosGFP(+) neurons instead displayed shorter latency and larger amplitude subthreshold responses to surround whisker stimulation. Using optogenetic stimulation, we determined that these neurons are targeted by axons from the posteromedial nucleus (POm), a paralemniscal thalamic nucleus associated with broad receptive fields and widespread cortical projections. We conclude that fosGFP expression discriminates between single- and multi-whisker receptive field layer 2 pyramidal neurons.


Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

  • Guy Doron‎ et al.
  • Neuron‎
  • 2014‎

The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: