Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Smooth muscle-specific Gsα deletion exaggerates angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo.

  • Xiaoteng Qin‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without an effective pharmaceutical treatment. Genetic studies have proved the involvement of smooth muscle phenotype switch in the development of AAA. The alpha subunit of the heterotrimeric G stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of smooth muscle Gsα in AAA formation remains unknown.


Systemic AAV10.COMP-Ang1 rescues renal glomeruli and pancreatic islets in type 2 diabetic mice.

  • Mi Tian‎ et al.
  • BMJ open diabetes research & care‎
  • 2020‎

Diabetic hyperglycemia causes progressive and generalized damage to the microvasculature. In renal glomeruli, this results in the loss of podocytes with consequent loss of constitutive angiopoietin-1 (Ang1) signaling, which is required for stability of the glomerular endothelium. Repeated tail vein injection of adenovirus expressing COMP-Ang1 (a stable bioengineered form of Ang1) was previously reported to improve diabetic glomerular damage despite the liver and lungs being primary targets of adenoviral infection. We thus hypothesized that localizing delivery of sustained COMP-Ang1 to the kidney could increase its therapeutic efficacy and safety for the treatment of diabetes.


Human Periodontal Ligament Stem Cell-Derived Exosomes Promote Bone Regeneration by Altering MicroRNA Profiles.

  • Ting Liu‎ et al.
  • Stem cells international‎
  • 2020‎

The role and underlying mechanism of exosomes derived from human periodontal ligament stem cells (PDLSC) in osteogenesis are unclear. In the present study, we identified the exosomes derived from PDLSCs and found that osteogenic induction can enhance the osteogenic ability of PDLSC-derived exosomes in promoting the osteogenic differentiation of rat bone marrow stem cells (BMSCs). To investigate the underlying mechanism, we analyzed the exosomal miRNA expression profiles of undifferentiated and osteogenic differentiated PDLSCs by RNA sequencing. The results showed that seventy-two miRNAs were upregulated and thirty-five miRNAs were downregulated after osteogenic induction. The results of Gene Ontology analysis and pathway analysis demonstrated that the target genes of differentially expressed exosomal miRNAs participate in the regulation of a variety of biological processes, such as catalytic activity, protein binding, metabolic processes, cell development, and differentiation, and are enriched in osteogenic differentiation-related pathways, such as MAPK signaling, AMPK signaling, and insulin signaling pathways. Our results reveal for the first time that the exosomal miRNAs derived from osteogenic differentiated PDLSCs may promote the osteogenic differentiation of BMSCs, which provides a basis for further research on the regulatory function of exosomal miRNA of PDLSCs during osteogenesis.


An Investigation of the Male Genitourinary Abscess Originated from Urinary Tract in a Tertiary Hospital, Shanghai, China, from 2004 to 2019.

  • Jiaying Tan‎ et al.
  • Infection and drug resistance‎
  • 2021‎

Male genitourinary abscess is one of the serious complications of urinary tract infections (UTIs). There were few researches on the clinical and pathogenic characteristics of male genitourinary abscess.


Albumin Reduces Oxidative Stress and Neuronal Apoptosis via the ERK/Nrf2/HO-1 Pathway after Intracerebral Hemorrhage in Rats.

  • Shuixiang Deng‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Albumin has been regarded as a potent antioxidant with free radical scavenging activities. Oxidative stress and neuronal apoptosis are responsible for its highly damaging effects on brain injury after intracerebral hemorrhage (ICH). Here, the present study investigated the neuroprotective effect of albumin against early brain injury after ICH and the potential underlying mechanisms.


Neuroinflammation in the medial prefrontal cortex exerts a crucial role in bone cancer pain.

  • Xin Li‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

Bone cancer pain (BCP) is one of the most common types of pain in cancer patients which compromises the patient's functional status, quality of life, and survival. Central hyperalgesia has increasingly been identified as a crucial factor of BCP, especially in the medial prefrontal cortex (mPFC) which is the main cortical area involved in the process of pain and consequent negative emotion. To explore the genetic changes in the mPFC during BCP occurrence and find possible targets for prediction, we performed transcriptome sequencing of mPFC in the BCP rat model and found a total of 147 differentially expressed mRNAs (DEmRNAs). A protein-protein interaction (PPI) network revealed that the DEmRNAs mainly participate in the inflammatory response. Meanwhile, microglia and astrocytes were activated in the mPFC of BCP rats, further confirming the presence of neuroinflammation. In addition, Gene Ontology (GO) analysis showed that DEmRNAs in the mPFC are mainly involved in antigen processing, presentation of peptide antigen, and immune response, occurring in the MHC protein complex. Besides, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEmRNAs are mainly enriched in the pathways of phagosome, staphylococcus aureus infection, and antigen processing, in which MHCII participate. Furthermore, immunostaining showed that MHCII is mainly located in the microglia. Microglia are believed to be involved in antigen processing, a key cause of BCP. In vivo, minocycline (MC) treatment inhibits the activation of microglia and reduces the expression of MHCII and proinflammatory cytokines, thereby alleviating BCP and pain-related anxiety. Taken together, our study identified differentially expressed genes in the BCP process and demonstrated that the activation of microglia participates in the inflammatory response and antigen process, which may contribute to BCP.


Adipose HuR protects against diet-induced obesity and insulin resistance.

  • Jingyuan Li‎ et al.
  • Nature communications‎
  • 2019‎

Human antigen R (HuR) is a member of the Hu family of RNA-binding proteins and is involved in many physiological processes. Obesity, as a worldwide healthcare problem, has attracted more and more attention. To investigate the role of adipose HuR, we generate adipose-specific HuR knockout (HuRAKO) mice. As compared with control mice, HuRAKO mice show obesity when induced with a high-fat diet, along with insulin resistance, glucose intolerance, hypercholesterolemia and increased inflammation in adipose tissue. The obesity of HuRAKO mice is attributed to adipocyte hypertrophy in white adipose tissue due to decreased expression of adipose triglyceride lipase (ATGL). HuR positively regulates ATGL expression by promoting the mRNA stability and translation of ATGL. Consistently, the expression of HuR in adipose tissue is reduced in obese humans. This study suggests that adipose HuR may be a critical regulator of ATGL expression and lipolysis and thereby controls obesity and metabolic syndrome.


miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression.

  • Peng-Fei Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Dysregulation of microRNA expression is involved in several pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of miR-363 in the progression and chemo-resistance of gastric cancer remain enigmatic. In this study, we validated that miR-363 expression was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identifies high levels of miR-363 expression as an independent predictor for postoperative recurrence and lower overall survival. Increased miR-363 expression promotes gastric cancer cell proliferation and chemo-resistance through directly targeting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7). Clinically, our data reveal that overexpression of miR-363 correlates with the poor survival outcomes in patients with gastric cancer, and docetaxel + cisplatin + 5-FU (DCF) regimen response is impaired in patients with miR-363 overexpression. These data suggest that miR-363 may be a potential therapeutic target for gastric cancer and serve as a biomarker for predicting response to DCF regimen treatment.


7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome.

  • Mi Tian‎ et al.
  • Neuropharmacology‎
  • 2015‎

Fragile X syndrome (FXS) is characterized by immature dendritic spine architectures and cognitive impairment. 7, 8-Dihydroxyflavone (7, 8-DHF) has recently been identified as a high affinity tropomyosin receptor kinase B (TrkB) agonist. The purpose of this paper was to examine the utility of 7, 8-DHF as an effective pharmacotherapeutic agent that targets dendritic pathology and cognitive impairments in FXS mutant. We synthesized pharmacologic, behavioral, and biochemical approaches to examine the effects of 7, 8-DHF on spatial and fear memory functions, and morphological spine abnormalities in fragile X mental retardation 1 (Fmr1) gene knock-out mice. The study found that 4 weeks of treatment with 7, 8-DHF improved spatial and fear memory, and ameliorated morphological spine abnormalities including the number and elongation of spines in the hippocampus and amygdala. Further mechanism analysis revealed that 7, 8-DHF enhanced the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor, but reduced the normal levels of GluA2 at the synapses in Fmr1. Potentially related to drug-induced changes in AMPA receptor subunits, 7, 8-DHF at the synapses led to phosphorylation of specific serine sites on subunits Ser818 and Ser813 of GluA1, and Ser880 of GluA2, as well as phosphorylation of TrkB, calcium/calmodulin-dependent protein kinase II, and protein kinase C. However, 7, 8-DHF neither affected behavioral performance nor increased TrkB phosphorylation in WT mice, which suggested that it had FXS-specific correcting effect. Altogether, these results demonstrated that 7, 8-DHF improved learning and memory, and reduced abnormalities in spine morphology, thus providing a potential pharmacotherapeutic strategy for FXS.


Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice.

  • Jilong Wang‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

Although quantum dot (QD)-induced toxicity occurs due to free radicals, generation of oxidative stress mediated by reactive oxygen species (ROS) formation is considered an important mechanism. However, free radical mechanisms are essentially difficult to elucidate at the molecular level because most biologically relevant free radicals are highly reactive and short-lived, making them difficult to directly detect, especially in vivo. Antioxidants play an important role in preventing or, in most cases, limiting the damage caused by ROS. Healthy people and animals possess many endogenous antioxidative substances that scavenge free radicals in vivo to maintain the redox balance and genome integrity. The antioxidant capacity of an organism is highly important but seldom studied. In this study, the dose and time effects of CdTe QDs on the antioxidant capacities of the liver and kidneys were investigated in mice using the electron paramagnetic resonance (EPR) spin-trapping technique. We found that the liver and kidneys of healthy mice contain specific antioxidant capacities that scavenge ·OH and ·O2-. Furthermore, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione [GSH] and malondialdehyde [MDA]) were examined. In dose course studies, the free radical scavenging efficiencies of the liver and kidneys were found to gradually decrease with increasing concentration of CdTe QD exposure. The activities and levels of SOD, CAT, GPx and MDA were observed to increase in treated groups, whereas those of GSH were reduced. The time course studies revealed that the QD-induced antioxidant efficiency reduction was time dependent with GSH decrease and could recover after a period of time. These experimental results offer new information on QD toxicity in vivo. Specifically, CdTe QDs can deplete GSH to reduce the elimination ability of the liver and kidneys for ·OH and ·O2-, thus inducing oxidative damage to tissues.


Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway.

  • Xuesong Su‎ et al.
  • Experimental cell research‎
  • 2021‎

Obesity, a global epidemic, is one of the critical causes of chronic kidney disease (CKD). R-spondin1 (RSPO1) possessing the potential to activate Wnt/β-catenin pathway was reported to be elevated in circulation of obesity objects. However, the function of RSPO1 and the latent mechanism in obesity-related CKD are still left to be revealed. In the present study, renal RSPO1 expression was increased in mice fed on high-fat diet (HFD) for 12 weeks. Lentivirus-mediated RSPO1 knockdown partly recovered obesity-related metabolic symptoms, while distinctly remitted kidney dysfunction and renal fibrosis in obesity mice. In vitro, recombinant RSPO1 was found to elevate leucine-rich repeat-containing G protein coupled receptor 4 (LGR4) expression, promote Wnt/β-catenin signaling pathway activation, facilitate epithelial-mesenchymal transition (EMT) and increase collagen deposition in HK2 renal tubular cells. Such pro-fibrotic effect of RSPO1 was diminished by LGR4 siRNA in HK2 cells. In summary, we demonstrate that RSPO1/LGR4 axis is involved in obesity-related renal fibrosis at least through activating Wnt/β-catenin signaling pathway, providing a potential therapeutic target for this disease.


Quantitative Proteomics Analysis of Susceptibility and Resilience to Stress in a Rat model of PTSD.

  • Jiao Duan‎ et al.
  • Behavioural brain research‎
  • 2021‎

Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder and sometimes deadly consequence of exposure to severe psychological trauma. However, there has been little known about the definitive molecular changes involved in determining vulnerability to PTSD. In the current study, we used proteomics to quantify protein changes in the hippocampus of foot shocks rats. A total of 6151 proteins were quantified and 97 proteins were significantly differentially expressed. The protein-protein interaction (PPI) analysis showed that oxidation-reduction process and glutathione homeostasis may be the potential key progress of being vulnerable to PTSD. The Gene Ontology analysis revealed enriched GO terms in the protein groups of Susceptible group vs Control group rats for glutathione binding,oligopeptide binding,modified amino acid binding,and glutathione transferase activity for their molecular functions (MF) and in the process of cellular response to toxic substance,xenobiotic metabolic process, urea metabolic process, and response to drug for the biological process (BP).SIGNIFICANCE:In recent years, there has been a growing interest in mental illness associated with trauma exposure. We found that stress susceptibility was associated with increased expression of arginase 1 indicated as a potential treatment target. Our results also proposed that carbonic anhydrases 3 could be a biomarker for the development of PTSD. This research helps to explain the potential molecular mechanism in PTSD and supply a new method for ameliorating PTSD.


Combination of an anti-EGFRvIII antibody CH12 with Rapamycin synergistically inhibits the growth of EGFRvIII+PTEN-glioblastoma in vivo.

  • Wen Xu‎ et al.
  • Oncotarget‎
  • 2016‎

There are still unmet medical needs for the treatment of glioblastoma (GBM), the most frequent and aggressive brain tumor worldwide. EGFRvIII, overexpressed in approximately 30% of GBM, has been regarded as a potential therapeutic target. In this study, we demonstrated that CH12, an anti-EGFRvIII monoclonal antibody, could significantly suppress the growth of EGFRvIII+ GBM in vivo; however, PTEN deficiency in GBM reduced the efficacy of CH12 by attenuating its effect on PI3K/AKT/mTOR pathway. To overcome this problem, CH12 was combined with the mTOR inhibitor rapamycin, leading to a synergistic inhibitory effect on EGFRvIII+PTEN- GBM in vivo. Mechanistically, the synergistic antitumor effect was achieved via attenuating EGFR and PI3K/AKT/mTOR pathway more effectively and reversing the STAT5 activation caused by rapamycin treatment. Moreover, the combination therapy suppressed angiogenesis and induced cancer cell apoptosis more efficiently. Together, these results indicated that CH12 and rapamycin could synergistically suppress the growth of EGFRvIII+PTEN- GBM, which might have a potential clinical application in the future.


Synergistic antitumor efficacy against the EGFRvIII+HER2+ breast cancers by combining trastuzumab with anti-EGFRvIII antibody CH12.

  • Wen Xu‎ et al.
  • Oncotarget‎
  • 2015‎

Although Trastuzumab, an anti-HER2 antibody, benefits certain patients with HER2-overexpressing breast cancer, de novo or acquired trastuzumab resistance remains a haunting issue. EGFRvIII, co-expressing with HER2 in some breast tumors, indicates a poor clinical prognosis. However, the role of EGFRvIII in the function of trastuzumab is not clear. Here, we demonstrated that EGFRvIII overexpression contributed to de novo trastuzumab resistance and the feedback activation of STAT3 caused by trastuzumab also resulted in acquired resistance in EGFRvIII(+)HER2(+) breast cancers. CH12, a highly effective anti-EGFRvIII monoclonal antibody that preferentially binds to EGFRvIII, significantly suppressed the growth of EGFRvIII+HER2(+) breast cancer cells in vitro and in vivo. Importantly, CH12 in combination with trastuzumab had a synergistic inhibitory effect on EGFRvIII(+)HER2(+) breast cancers in vitro and in vivo via attenuating the phosphorylation of EGFR and HER2 and their downstream signal pathways more effectively and reversing STAT3 feedback activation. Moreover, the combination therapy suppressed angiogenesis and induced cell apoptosis significantly. Together, these results suggested a synergistic efficacy of the combination of trastuzumab with CH12 against EGFRvIII(+)HER2(+) breast cancers, which might be a potential clinical application in the future.


Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice.

  • Yao Wang‎ et al.
  • Journal of neuroinflammation‎
  • 2022‎

Neuroinflammation is a crucial factor in the development of secondary brain injury after intracerebral hemorrhage (ICH). Irisin is a newly identified myokine that confers strong neuroprotective effects in experimental ischemic stroke. However, whether this myokine can exert neuroprotection effects after ICH remains unknown. This study aimed to investigate the impact of irisin treatment on neuroinflammation and neuronal apoptosis and the underlying mechanism involving integrin αVβ5/AMPK pathway after ICH.


Long Non-Coding RNA Myosin Light Chain Kinase Antisense 1 Plays an Oncogenic Role in Gallbladder Carcinoma by Promoting Chemoresistance and Proliferation.

  • Yongliang Li‎ et al.
  • Cancer management and research‎
  • 2021‎

Long non-coding RNAs (lncRNAs) have been reported to play critical roles in human tumours, including gallbladder carcinoma (GBC). However, their biological functions and molecular mechanisms in tumorigenesis and progression remain largely unknown.


Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium.

  • Gaofeng Zhang‎ et al.
  • PeerJ‎
  • 2017‎

Abscisic acid (ABA) receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR) (named PYLs for simplicity) are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium. A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum, G. raimondii and the tetraploid G. hirsutum and G. barbadense, respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in Gossypium. Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton.


miR-660-5p promotes breast cancer progression through down-regulating TET2 and activating PI3K/AKT/mTOR signaling.

  • Bing Peng‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2020‎

Breast cancer (BC) is a commonly diagnosed cancer in females. MicroRNA-660-5p (miR-660-5p) has been reported to be involved in the occurrence and development of BC. However, the regulatory network of miR-660-5p in BC has not been fully addressed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the enrichment of miR-660-5p and tet-eleven translocation 2 (TET2) in BC tissues and cells. Cell counting kit-8 (CCK8), flow cytometry, and transwell migration and invasion assays were used to measure cell proliferation, apoptosis, migration, and invasion. The target relationship between miR-660-5p and TET2 was confirmed by dual luciferase reporter assay. Protein expression was measured by western blot. The expression of miR-660-5p was elevated in BC, and high expression of miR-660-5p was closely related to lymph node metastasis, advanced TNM stage, and vascular invasion of BC tumors. miR-660-5p silencing inhibited cell proliferation and metastasis, but induced apoptosis of BC cells. TET2 was identified as a direct target of miR-660-5p, and the interference of TET2 partly reversed the suppressive effects of miR-660-5p silencing on the malignant potential of BC cells. miR-660-5p promoted BC progression partly through modulating TET2 and PI3K/AKT/mTOR signaling. miR-660-5p/TET2 axis might be a promising target for BC treatment.


LKB1IP promotes pathological cardiac hypertrophy by targeting PTEN/Akt signalling pathway.

  • Mi Tian‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.


Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy.

  • Li Zhang‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Recently, human umbilical cord mesenchymal stem cell (HucMSC)-derived exosome is a new focus of research in neurological diseases. The present study was aimed to investigate the protective effects of HucMSC-derived exosome in both in vivo and in vitro TBI models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: