Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis.

  • Alla Mitrofanova‎ et al.
  • Kidney international‎
  • 2018‎

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-β-cyclodextrin (HPβCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPβCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPβCD improves renal function in experimental Alport Syndrome and FSGS.


Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome.

  • Mengyuan Ge‎ et al.
  • eLife‎
  • 2023‎

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.


Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease.

  • Matthew B Wright‎ et al.
  • Nature communications‎
  • 2021‎

Impaired cellular cholesterol efflux is a key factor in the progression of renal, cardiovascular, and autoimmune diseases. Here we describe a class of 5-arylnicotinamide compounds, identified through phenotypic drug discovery, that upregulate ABCA1-dependent cholesterol efflux by targeting Oxysterol Binding Protein Like 7 (OSBPL7). OSBPL7 was identified as the molecular target of these compounds through a chemical biology approach, employing a photoactivatable 5-arylnicotinamide derivative in a cellular cross-linking/immunoprecipitation assay. Further evaluation of two compounds (Cpd A and Cpd G) showed that they induced ABCA1 and cholesterol efflux from podocytes in vitro and normalized proteinuria and prevented renal function decline in mouse models of proteinuric kidney disease: Adriamycin-induced nephropathy and Alport Syndrome. In conclusion, we show that small molecule drugs targeting OSBPL7 reveal an alternative mechanism to upregulate ABCA1, and may represent a promising new therapeutic strategy for the treatment of renal diseases and other disorders of cellular cholesterol homeostasis.


Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome.

  • Jin-Ju Kim‎ et al.
  • EBioMedicine‎
  • 2021‎

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function. However, the mechanisms driving DDR1-dependent fibrosis remain largely unknown.


Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis.

  • Mingchen Zhu‎ et al.
  • Cancer science‎
  • 2015‎

The UHRF1 protein is pivotal for DNA methylation and heterochromatin formation, leading to decreased expressions of tumor suppressor genes and contributing to tumorigenesis. However, the factors that modulate UHRF1 expression in colorectal cancer (CRC) remain unclear. Here we showed that, compared with corresponding normal tissues, UHRF1 was upregulated and microRNA-9 (miR-9) was downregulated in CRC tissues. The expression of UHRF1 was inversely correlated with overall survival rates of patients with CRC. Overexpression of miR-9 in CRC cell lines significantly attenuated CRC cell proliferation and promoted cell apoptosis. The expression of UHRF1 was markedly reduced in pre-miR-9 transfected CRC cells. Using luciferase reporter assay, we confirmed that miR-9 was a direct upstream regulator of UHRF1. Finally, analysis of miR-9 and UHRF1 levels in human CRC tissues revealed that expression of miR-9 was inversely correlated with UHRF1 expression. Collectively, our results offer in vitro validation of the concept that miR-9 could repress the expression of UHRF1, and function as a tumor-suppressive microRNA in CRC. It may serve as a prognostic and therapeutic marker for CRC.


APOL1 renal risk variants promote cholesterol accumulation in tissues and cultured macrophages from APOL1 transgenic mice.

  • Jung-Hwa Ryu‎ et al.
  • PloS one‎
  • 2019‎

Apolipoprotein L1 (APOL1) genetic variants G1 and G2, compared to the common allele G0, are major risk factors for non-diabetic kidney disease in African descent populations. APOL1 is a minor protein component of HDL, as well as being expressed in podocytes and vascular cells. Reverse cholesterol transport involves the transport of cholesterol to HDL by cellular ATP-binding cassette; ABCA1 and ABCG1 with subsequent delivery from peripheral tissues to the liver. With impaired reverse cholesterol transport, lipid accumulation occurs and macrophages morphologically transform into foam cells, releasing inflammatory factors. We asked whether the APOL1 risk variants alter peripheral cholesterol metabolism and specifically affect macrophage cholesterol efflux. Tissues and bone marrow (BM)-derived monocytes were isolated from wild-type mice (WT) and from BAC/APOL1 transgenic (APOL1-G0, APOL1-G1, and APOL1-G2) mice, which carry a bacterial artificial chromosome that contains the human APOL1 genomic region. Monocytes were differentiated into macrophages using M-CSF, and then polarized into M1 and M2 macrophages. Cholesterol content, cholesterol efflux, and ABCA1 and ABCG1 mRNA expression were measured. Kidney, spleen, and bone marrow-derived macrophages from APOL1-G1 and -G2 mice showed increased cholesterol accumulation and decreased ABCA1 and ABCG1 mRNA levels. BM-derived macrophages from APOL1-G1 and -G2 mice showed significantly reduced cholesterol efflux compared to WT or APOL1-G0 macrophages. Taken together, the evidence suggests that APOL1-G1 and -G2 risk variants impaired reverse cholesterol transport through decreased expression of cholesterol efflux transporters suggesting a possible mechanism to promote macrophage foam cell formation, driving inflammation in the glomerulus and renal interstitium.


Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome.

  • Xiaochen Liu‎ et al.
  • Kidney international‎
  • 2020‎

Defective cholesterol metabolism primarily linked to reduced ATP-binding cassette transporter A1 (ABCA1) expression is closely associated with the pathogenesis and progression of kidney diseases, including diabetic kidney disease and Alport Syndrome. However, whether the accumulation of free or esterified cholesterol contributes to progression in kidney disease remains unclear. Here, we demonstrate that inhibition of sterol-O-acyltransferase-1 (SOAT1), the enzyme at the endoplasmic reticulum that converts free cholesterol to cholesterol esters, which are then stored in lipid droplets, effectively reduced cholesterol ester and lipid droplet formation in human podocytes. Furthermore, we found that inhibition of SOAT1 in podocytes reduced lipotoxicity-mediated podocyte injury in diabetic kidney disease and Alport Syndrome in association with increased ABCA1 expression and ABCA1-mediated cholesterol efflux. In vivo, Soat1 deficient mice did not develop albuminuria or mesangial expansion at 10-12 months of age. However, Soat1 deficiency/inhibition in experimental models of diabetic kidney disease and Alport Syndrome reduced cholesterol ester content in kidney cortices and protected from disease progression. Thus, targeting SOAT1-mediated cholesterol metabolism may represent a new therapeutic strategy to treat kidney disease in patients with diabetic kidney disease and Alport Syndrome, like that suggested for Alzheimer's disease and cancer treatments.


ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease.

  • Marie Ito‎ et al.
  • Scientific reports‎
  • 2023‎

Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1β were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1β were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1β. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: