Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 114 papers

An ancient C-type lectin in Chlamys farreri (CfLec-2) that mediate pathogen recognition and cellular adhesion.

  • Jialong Yang‎ et al.
  • Developmental and comparative immunology‎
  • 2010‎

C-type lectins are a superfamily of Ca(2+) dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P<0.01) after scallops were stimulated by LPS, PGN or β-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant CfLec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind β-glucan. Immunofluorescence assay with polyclonal antibody specific for CfLec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny.


An integrin from oyster Crassostrea gigas mediates the phagocytosis toward Vibrio splendidus through LPS binding activity.

  • Zhihao Jia‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

Integrins are a family of cell adhesion molecules which play important roles in the regulation of cell adhesion, migration, proliferation, apoptosis and phagocytosis. In the present study, the immune function of an integrin from the oyster Crassostrea gigas (designated CgIntegrin) was characterized to understand the regulatory mechanism of hemocyte phagocytosis toward different microbes. The full-length cDNA of CgIntegrin was 2571 bp with an open reading frame (ORF) of 2397 bp, encoding a polypeptide of 799 amino acids. The mRNA transcripts of CgIntegrin were predominantly detected in hemocytes, gonad and adductor muscle, while lowly in hepatopancreas, mantle and gill. The mRNA expression level was up-regulated at 6 h post lipopolysaccharide (LPS) stimulation (p < 0.01), while no significant change was observed after peptidoglycan (PGN) stimulation. The oyster hemocytes with relative high CgIntegrin expression level exhibited different phagocytic abilities towards different microorganism and particles, such as Gram-positive bacteria Vibrio splendidus, Gram-negative bacteria Staphylococcus aureus and latex beads. Moreover, the phagocytic rate towards V. splendidus was significantly decreased after the blockade of CgIntegrin using the polyclonal antibody. The recombinant CgIntegrin (rCgIntegrin) displayed agglutinating activity towards V. splendidus but not S. aureus and Y. lipolytica. It also exhibited a higher binding affinity towards LPS (compared to rTrx group) in a dose-dependent manner with the apparent dissociation constant (Kd) of 5.53 × 10(-6) M. The results indicated that CgIntegrin served as a pattern recognition receptor with LPS binding activity, which could directly bind to V. splendidus and enhance the phagocytosis of oyster hemocytes.


The immunomodulation mediated by a delta-opioid receptor for [Met(5)]-enkephalin in oyster Crassostrea gigas.

  • Zhaoqun Liu‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

Opioid receptors (OR) are a group of G protein-coupled receptors with opioids as ligands, which play an important role in triggering the second messengers to modulate immune response in vertebrate immunocytes. In the present study, the full length cDNA of a homologue of δ-opioid receptor (DOR) for [Met(5)]-enkaphalin was cloned from oyster Crassostrea gigas (designated as CgDOR), which was 1104 bp encoding a peptide of 367 amino acids containing a conserved 7tm_1 domain. After the stimulation of [Met(5)]-enkephalin, the concentration of second messengers Ca(2+) and cAMP in the HEK293T cells decreased significantly (p <0.05) with the expression of CgDOR. However, this trend was reverted with the addition of DOR antagonist BNTX. The CgDOR transcripts were ubiquitously detected in the tested tissues including haemocytes, gonad, mantle, kidney, gill, adductor muscle and hepatopancreas, with the highest expression level in the hepatopancreas. After LPS stimulation, the expression level of CgDOR mRNA began to increase (4.05-fold, p <0.05) at 6 h, and reached the highest level (5.00-fold, p <0.05) at 12 h. Haemocyte phagocytic and antibacterial activities increased significantly after [Met(5)]-enkephalin stimulation, whereas the increase was repressed with the addition of DOR antagonist BNTX. These results collectively suggested that CgDOR for [Met(5)]-enkephalin could modulate the haemocyte phagocytic and antibacterial functions through the second messengers Ca(2+) and cAMP, which might be requisite for pathogen elimination and homeostasis maintenance in oyster.


Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures.

  • Zhi Zhou‎ et al.
  • Neuroinformatics‎
  • 2015‎

It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.


A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

  • Conghui Liu‎ et al.
  • Developmental and comparative immunology‎
  • 2016‎

Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins.


TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

  • Zhi Zhou‎ et al.
  • Neuroinformatics‎
  • 2016‎

Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.


A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity.

  • Leilei Wang‎ et al.
  • PloS one‎
  • 2012‎

The C1q domain containing (C1qDC) proteins refer to a family of all proteins that contain the globular C1q (gC1q) domain, and participate in a series of immune responses depending on their gC1q domains to bind a variety of self and non-self binding ligands.


Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

  • MuhChyi Chai‎ et al.
  • Genes & development‎
  • 2018‎

Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.


An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury.

  • Chang Liu‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Lonicerae japonicae flos (LJF, the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.), a typical herbal medicine, targets the lung, heart and stomach meridian with the function of clearing heat and detoxication. It ameliorated inflammatory responses and protected against acute lung inflammation in animal models. Acute lung injury (ALI) is a kind of inflammatory disease in which alveolar cells are damaged. However, a network pharmacology study to thoroughly investigate the mechanisms preventing ALI has not been performed.


Characterization and function analysis of a Kazal-type serine proteinase inhibitor in the red claw crayfish Cherax quadricarinatus.

  • Yan Wang‎ et al.
  • Developmental and comparative immunology‎
  • 2021‎

Kazal-type serine proteinase inhibitors (KPIs) function in physiological and immunological processes requiring proteinase action. In the present study, the first Cherax quadricarinatus KPI gene (designated CqKPI) was identified and characterized. The open reading frame of CqKPI contains 405 nucleotides and encodes a protein of 134 amino acids. CqKPI has two Kazal domains comprising 44 amino acid residues with the conserved amino acid sequence C-X3-C-X7-C-X6-Y-X3-C-X6-C-X12-C. Each Kazal domain has six conserved cysteine residues, which can form a structural conformation of three pairs of disulfide bonds stabilizing the Kazal domain. CqKPI exhibited high similarity with previously identified KPIs from crayfish hemocytes. The results of tissue distribution showed that CqKPI had the highest expression level in hemocytes, and this was in agreement with phylogenic relationships. Recombinant CqKPI (rCqKPI) was heterologously expressed in Escherichia coli and purified for further study. The proteinase inhibition assays suggested that rCqKPI could potently inhibit elastase and weakly inhibit trypsin, subtilisin A, and proteinase K, but not α-chymotrypsin. It can firmly bind to Bacillus hwajinpoensis, Staphylococcus aureus, and Vibrio parahaemolyticus, with weak binding to Candida albicans. In addition, CqKPI inhibited bacterial secretory proteinase activity and inhibited the growth of B. hwajinpoensis and C. albicans. These data suggest that CqKPI might be involved in anti-bacterial immunity, acting as an inhibitor of the proteinase cascade in the resistance to invasion of pathogens.


Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response.

  • Xiao Wang‎ et al.
  • Cell reports‎
  • 2020‎

The advent of base editors (BEs) holds great potential for correcting pathogenic-related point mutations to treat relevant diseases. However, Cas9 nickase (nCas9)-derived BEs lead to DNA double-strand breaks, which can trigger unwanted DNA damage response (DDR). Here, we show that the original version of catalytically dead Cas12a (dCas12a)-conjugated BEs induce a basal level of DNA breaks and minimally activate DDR proteins, including H2AX, ATM, ATR, and p53. By fusing dCas12a with engineered human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A), we further develop the BEACON (base editing induced by human APOBEC3A and Cas12a without DNA break) system to achieve enhanced deamination efficiency and editing specificity. Efficient C-to-T editing is achieved by BEACON in mammalian cells at levels comparable to AncBE4max, with only low levels of DDR and minimal RNA off-target mutations. Importantly, BEACON induces in vivo base editing in mouse embryos, and targeted C-to-T conversions are detected in F0 mice.


Identification of a Novel Pattern Recognition Receptor DM9 Domain Containing Protein 4 as a Marker for Pro-Hemocyte of Pacific Oyster Crassostrea gigas.

  • Zhihao Jia‎ et al.
  • Frontiers in immunology‎
  • 2020‎

DM9 refers to an uncharacterized protein domain that is originally discovered in Drosophila melanogaster. Two proteins with DM9 repeats have been recently identified from Pacific oyster Crassostrea gigas as mannose-specific binding pattern-recognition receptors (PRRs). In the present study, a novel member of DM9 domain containing protein (designated as CgDM9CP-4) was identified from C. gigas. CgDM9CP-4, about 16 kDa with only two tandem DM9 domains, was highly enriched in hemocytes and gill. The transcripts level of CgDM9CP-4 in circulating hemocytes were decreased after LPS, PGN and Vibrio splendidus stimulations. The recombinant protein of CgDM9CP-4 (rCgDM9CP-4) displayed a broad binding spectrum towards various pathogen-associated molecular patterns (PAMPs) (LPS, PGN, β-glucan and Mannose) and microorganisms (Staphylococcus aureus, Micrococcus luteus, V. splendidus, V. anguillarum, Escherichia coli, Pichia pastoris and Yarrowia lipolytica). CgDM9CP-4 was mostly expressed in gill and some of the hemocytes. Flow cytometry analysis demonstrated that the CgDM9CP-4-positive hemocytes accounted for 7.3% of the total hemocytes, and they were small in size and less in granularity. CgDM9CP-4 was highly expressed in non-phagocytes (~82% of total hemocytes). The reactive oxygen species (ROS) and the expression levels of cytokines in CgDM9CP-4-positive hemocytes were much lower than that in CgDM9CP-4-negative hemocytes. The mRNA expression level of CgDM9CP-4 in hemocytes was decreased after RNAi of hematopoietic-related factors (CgGATA, CgRunt, CgSCL, and CgNotch). In addition, CgDM9CP-4-positive cells were found to be much more abundant in hemocytes from gill than that from hemolymph, with most of them located in the gill filament. All these results suggested that CgDM9CP-4 was a novel member of PRR that expressed in undifferentiated pro-hemocytes to mediate immune recognition of pathogens.


Flexible and Accurate Substrate Processing with Distinct Presenilin/γ-Secretases in Human Cortical Neurons.

  • Hirotaka Watanabe‎ et al.
  • eNeuro‎
  • 2021‎

Mutations in the presenilin genes (PS1, PS2) have been linked to the majority of familial Alzheimer's disease (AD). Although great efforts have been made to investigate pathogenic PS mutations, which ultimately cause an increase in the toxic form of β-amyloid (Aβ), the intrinsic physiological functions of PS in human neurons remain to be determined. In this study, to investigate the physiological roles of PS in human neurons, we generated PS1 conditional knock-out (KO) induced pluripotent stem cells (iPSCs), in which PS1 can be selectively abrogated under Cre transduction with or without additional PS2 KO. We showed that iPSC-derived neural progenitor cells (NPCs) do not confer a maintenance ability in the absence of both PS1 and PS2, showing the essential role of PS in Notch signaling. We then generated PS-null human cortical neurons, where PS1 was intact until full neuronal differentiation occurred. Aβ40 production was reduced exclusively in human PS1/PS2-null neurons along with a concomitant accumulation of amyloid β precursor protein (APP)-C-terminal fragments CTFs, whereas Aβ42 was decreased in neurons devoid of PS2 Unlike previous studies in mice, in which APP cleavage is largely attributable to PS1, γ-secretase activity seemed to be comparable between PS1 and PS2. In contrast, cleavage of another substrate, N-cadherin, was impaired only in neurons devoid of PS1 Moreover, PS2/γ-secretase exists largely in late endosomes/lysosomes, as measured by specific antibody against the γ-secretase complex, in which Aβ42 species are supposedly produced. Using this novel stem cell-based platform, we assessed important physiological PS1/PS2 functions in mature human neurons, the dysfunction of which could underlie AD pathogenesis.


Morphological diversity of single neurons in molecularly defined cell types.

  • Hanchuan Peng‎ et al.
  • Nature‎
  • 2021‎

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Web-Based Nomograms for Overall Survival and Cancer-Specific Survival of Bladder Cancer Patients with Bone Metastasis: A Retrospective Cohort Study from SEER Database.

  • Sheng Yang‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Our study aimed to explore the prognostic factors of bladder cancer with bone metastasis (BCBM) and develop prediction models to predict the overall survival (OS) and cancer-specific survival (CSS) of BCBM patients.


Platelet-Activating Biominerals Enhanced Injectable Hydrogels With Superior Bioactivity for Bone Regeneration.

  • Xin Chen‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2022‎

Refractory bone fracture, which is difficult to be treated, is a common clinical disease. Taking inspiration from the natural process of bone regeneration, we provide a biomimetic strategy to develop a new injectable biomaterial for repairing bone defects, which is mainly composed of platelets, fibrins, and biominerals. Biomineral nanoparticles (EACPNs) with an amorphous phase are prepared by an enzyme-catalyzed route and display a platelet-activating property. The composite hydrogel (EPH) of EACPNs, fibrins, and platelets is injectable, and has similar chemical properties to natural materials in bone regeneration. The dried EPH samples display a highly porous structure, which would be favorable for cell attachment and growth. The results from in vitro studies indicate that EPH has high biocompatibility and superior bioactivity in promoting the osteogenic differentiation of rat bone marrow stem cells (rBMSCs). Furthermore, the results from in vivo studies clearly indicate that EPH can induce the formation of new collagen and vessels in the defect area, thus leading to faster regeneration of bone defects at 2 weeks. Our study provides a strategy for designing new biomimetic materials, which may be favorable in the treatment of refractory bone fracture.


Generation of a control human induced pluripotent stem cell line using the defective and persistent Sendai virus vector system.

  • Zhi Zhou‎ et al.
  • Stem cell research‎
  • 2021‎

The defective and persistent Sendai virus (SeVdp) vector system allows efficient generation of transgene-free induced pluripotent stem cells (iPSCs) from human somatic cells. By leveraging the system, here we report the generation of an iPSC line from somatic fibroblasts of a healthy control donner (female), named KEIOi002-A (also named YG-iPS). The control iPSC line would be a useful resource for stem cell research and regenerative medicine.


Metabolomics reveals the intervention effect of Zhuang medicine Longzuantongbi granules on a collagen-induced arthritis rat model by using UPLC-MS/MS.

  • Lan Yao‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Rheumatoid arthritis (RA) is known as "Fawang" in Zhuang medical theory. Longzuantongbi granules (LZTBG) is an in-hospital preparation used at the First Affiliated Hospital of the Guangxi University of Chinese Medicine. This medicine is based on traditional Zhuang medicine theory for the treatment of "Fawang", and has an effectiveness of over 86.67%. It comprises eight medicinal materials, including the main drug Toddalia asiatica (L.) Lam. and Kadsura coccinea (Lem.) A.C. Smith, the assisting drugs Alangium chinense (Lour.) Harms, Zanthoxylum nitidum (Roxb.) DC., Sinomenium acutum (Thunb.) Rehd.et Wils., Bauhinia championii (Benth.) Benth., Spatholobus suberectus Dunn, and Ficus hirta Vahl. All of these herbs are commonly used in Zhuang medicine.


Low XIST expression in Sertoli cells of Klinefelter syndrome patients causes high susceptibility of these cells to an extra X chromosome.

  • Liang-Yu Zhao‎ et al.
  • Asian journal of andrology‎
  • 2023‎

Klinefelter syndrome (KS) is the most common genetic cause of human male infertility. However, the effect of the extra X chromosome on different testicular cell types remains poorly understood. Here, we profiled testicular single-cell transcriptomes from three KS patients and normal karyotype control individuals. Among the different somatic cells, Sertoli cells showed the greatest transcriptome changes in KS patients. Further analysis showed that X-inactive-specific transcript ( XIST ), a key factor that inactivates one X chromosome in female mammals, was widely expressed in each testicular somatic cell type but not in Sertoli cells. The loss of XIST in Sertoli cells leads to an increased level of X chromosome genes, and further disrupts their transcription pattern and cellular function. This phenomenon was not detected in other somatic cells such as Leydig cells and vascular endothelial cells. These results proposed a new mechanism to explain why testicular atrophy in KS patients is heterogeneous with loss of seminiferous tubules but interstitial hyperplasia. Our study provides a theoretical basis for subsequent research and related treatment of KS by identifying Sertoli cell-specific X chromosome inactivation failure.


Clinical cure induced by pegylated interferon α-2b in the advantaged population of chronic hepatitis B virus infection: a retrospective cohort study.

  • Chaojing Wen‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2023‎

Among the advantaged population with clinical cure of chronic hepatitis B, chronic inactive hepatitis B virus carriers (IHCs) and nucleoside analog-experienced patients have similar serological manifestations. This study established non-interferon-treated groups as controls to compare the efficacy of pegylated interferon α-2b (Peg-IFNα-2b) in achieving clinical cure between IHCs and nucleoside analog (NA)-experienced patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: