Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

APC/CCDC20 and APC/C play pivotal roles in the process of embryonic development in Artemia sinica.

  • Mengchen Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Anaphase Promoting Complex or Cyclosome (APC/C) is a representative E3 ubiquitin ligase, triggering the transition of metaphase to anaphase by regulating degradation and ensures the exit from mitosis. Cell division cycle 20 (CDC20) and Cell division cycle 20 related protein 1 (CDH1), as co-activators of APC/C, play significant roles in the spindle assembly checkpoint, guiding ubiquitin-mediated degradation, together with CDC23. During the embryonic development of the brine shrimp, Artemia sinica, CDC20, CDH1 and CDC23 participate in cell cycle regulation, but the specific mechanisms of their activities remain unknown. Herein, the full-length cDNAs of cdc20 and cdc23 from A. sinica were cloned. Real-time PCR analyzed the expression levels of As-cdc20 and As-cdc23. The locations of CDH1, CDC20 and CDC23 showed no tissue or organ specificity. Furthermore, western blotting showed that the levels of As-CDC20, securin, cyclin B, CDK1, CDH1, CDC14B, CDC23 and geminin proteins conformed to their complicated degradation relationships during different embryo stages. Our research revealed that As-CDC20, As-CDH1 and APC mediate the mitotic progression, downstream proteins degradation and cellular differentiation in the process of embryonic development in A. sinica.


The Potential Roles of the G1LEA and G3LEA Proteins in Early Embryo Development and in Response to Low Temperature and High Salinity in Artemia sinica.

  • Wei Zhao‎ et al.
  • PloS one‎
  • 2016‎

Late embryogenesis abundant proteins (LEA) are stress resistance-related proteins that play crucial roles in protecting against desiccation, cold and high salinity in a variety of animals and plants. However, the expression pattern, distribution and functions of LEA proteins in the post-diapause period of Artemia sinica, and under high salinity and low temperature stresses, remain unknown. In this study, the complete cDNA sequences of the group 1 LEA (As-g1lea) and group 3 LEA (As-g3lea) genes from A. sinica were cloned. The expression patterns and location of As-G1LEA and As-G1LEA were investigated. The protein abundances of As-G1LEA, As-G3LEA and Trehalase were analyzed during different developmental stages of the embryo and under low temperature and high salinity stresses in A. sinica. The full-length cDNA of As-g1lea was 960 bp, encoding a 182 amino acid protein, and As-g3lea was 2089 bp, encoding a 364 amino acid protein. As-g1lea and As-g3lea showed their highest expressions at 0 h of embryonic development and both showed higher relative expression in embryonic, rather than adult, development stages. The abundances of As-G1LEA, As-G3LEA and trehalose were upregulated under low temperature and downregulated under high salinity stress. These two genes did not show any tissue or organ specific expression. Our results suggested that these LEA proteins might play a pivotal role in stress tolerance in A. sinica.


Identification and Mapping of a New Soybean Male-Sterile Gene, mst-M.

  • Qingsong Zhao‎ et al.
  • Frontiers in plant science‎
  • 2019‎

The use of sterility is common in plants and multiple loci for hybrid sterility have been identified in crops such as rice. In soybean, fine-mapping and research on the molecular mechanism of male sterility is limited. Here, we identified a male-sterile soybean line, which produces larger, abnormal pollen grains that stain poorly with I2-KI. In an inheritance test, all F 1 plants were fertile and the F 2 and F 2:3 populations conformed with the expected segregation ratio of 3:1 (fertility:sterility) (p = 0.82) and showed a 1:2:0 ratio of homozygous fertile: heterozygous fertile: homozygous sterile genotypes (p = 0.73), suggesting that the sterility was controlled by a single recessive gene (designated "mst-M"). Bulked segregant analysis showed that almost all single-nucleotide polymorphisms (SNPs; 95.92%) were distributed on chromosome 13 and 868 SNPs (95.81%) were distributed in the physical region of Chromosome 13.21877872 to Chromosome 13.22862641. Genetic mapping revealed that mst-M was flanked by W1 and dCAPS-1 with genetic distances of 0.6 and 1.8 cM, respectively. The order of the consensus markers and known sterility genes was: Satt146 - (5.0 cM) - st5 - (2.5 cM) - Satt030 - (15.3 cM) - ms6 - (5.0 cM) - Satt149 - (39.5 cM) - W1 - (0.6 cM) - mst-M - (14.1 cM) - Satt516 (7.5 cM) - ms1 - (16.3 cM) - Satt595. These results suggest that mst-M is a newly identified male-sterility gene, which represents an alternative genetic resource for developing a hybrid seed production system for soybean.


Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L.) Merr.] germplasm panel from maturity groups IV and V.

  • Jun Qin‎ et al.
  • PloS one‎
  • 2017‎

Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a P. sojae resistance gene pool that has high genetic diversity, and explored genomic regions underlying the host resistance to P. sojae races 1, 3, 7, 17 and 25. A soybean germplasm panel from maturity groups (MGs) IV and V including 189 accessions originated from 10 countries were used in this study. The panel had a high genetic diversity compared to the 6,749 accessions from MGs IV and V in USDA Soybean Germplasm Collection. Based on disease evaluation dataset of these accessions inoculated with P. sojae races 1, 3, 7, 17 and 25, which are publically available, five accessions in this panel were resistant to all races. Genome-wide association analysis identified a total of 32 significant SNPs, which were clustered in resistance-associated genomic regions, among those, ss715619920 was only 3kb away from the gene Glyma.14g087500, a subtilisin protease. Gene expression analysis showed that the gene was down-regulated more than 4 fold (log2 fold > 2.2) in response to P. sojae infection. The identified molecular markers and genomic regions that are associated with the disease resistance in this gene pool will greatly assist the U.S. Southern soybean breeders in developing elite varieties with broad genetic background and P. sojae resistance.


Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b.

  • Zhengxi Sun‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

The optimization of plant architecture in order to breed high-yielding soya bean cultivars is a goal of researchers. Tall plants bearing many long branches are desired, but only modest success in reaching these goals has been achieved. MicroRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene modules play pivotal roles in controlling shoot architecture and other traits in crops like rice and wheat. However, the effects of miR156-SPL modules on soya bean architecture and yield, and the molecular mechanisms underlying these effects, remain largely unknown. In this study, we achieved substantial improvements in soya bean architecture and yield by overexpressing GmmiR156b. Transgenic plants produced significantly increased numbers of long branches, nodes and pods, and they exhibited an increased 100-seed weight, resulting in a 46%-63% increase in yield per plant. Intriguingly, GmmiR156b overexpression had no significant impact on plant height in a growth room or under field conditions; however, it increased stem thickness significantly. Our data indicate that GmmiR156b modulates these traits mainly via the direct cleavage of SPL transcripts. Moreover, we found that GmSPL9d is expressed in the shoot apical meristem and axillary meristems (AMs) of soya bean, and that GmSPL9d may regulate axillary bud formation and branching by physically interacting with the homeobox gene WUSCHEL (WUS), a central regulator of AM formation. Together, our results identify GmmiR156b as a promising target for the improvement of soya bean plant architecture and yields, and they reveal a new and conserved regulatory cascade involving miR156-SPL-WUS that will help researchers decipher the genetic basis of plant architecture.


Genome-wide association study and genomic selection for yield and related traits in soybean.

  • Waltram Ravelombola‎ et al.
  • PloS one‎
  • 2021‎

Soybean [Glycine max (L.) Merr.] is a crop of great interest worldwide. Exploring molecular approaches to increase yield genetic gain has been one of the main challenges for soybean breeders and geneticists. Agronomic traits such as maturity, plant height, and seed weight have been found to contribute to yield. In this study, a total of 250 soybean accessions were genotyped with 10,259 high-quality SNPs postulated from genotyping by sequencing (GBS) and evaluated for grain yield, maturity, plant height, and seed weight over three years. A genome-wide association study (GWAS) was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model. Genomic selection (GS) was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that 20, 31, 37, and 23 SNPs were significantly associated with maturity, plant height, seed weight, and yield, respectively; Many SNPs were mapped to previously described maturity and plant height loci (E2, E4, and Dt1) and a new plant height locus was mapped to chromosome 20. Candidate genes were found in the vicinity of the two SNPs with the highest significant levels associated with yield, maturity, plant height, seed weight, respectively. A 11.5-Mb region of chromosome 10 was associated with both yield and seed weight. Overall, the accuracy of GS was dependent on the trait, year, and population structure, and high accuracy indicates that these agronomic traits can be selected in molecular breeding through GS. The SNP markers identified in this study can be used to improve yield and agronomic traits through the marker-assisted selection and GS in breeding programs.


Validation of a QTL for Grain Size and Weight Using an Introgression Line from a Cross between Oryza sativa and Oryza minuta.

  • Yue Feng‎ et al.
  • Rice (New York, N.Y.)‎
  • 2021‎

Grain size and weight are important target traits determining grain yield and quality in rice. Wild rice species possess substantial elite genes that can be served as an important resource for genetic improvement of rice. In this study, we identify and validate a novel QTL on chromosome 7 affecting the grain size and weight using introgression lines from cross of Oryza sativa and Oryza minuta.


Characterization of the Common Genetic Basis Underlying Seed Hilum Size, Yield, and Quality Traits in Soybean.

  • Qingsong Zhao‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Developing high yielding cultivars with outstanding quality traits are perpetual objectives throughout crop breeding operations. Confoundingly, both of these breeding objectives typically involve working with complex quantitative traits that can be affected by genetic and environmental factors. Establishing correlations of these complex traits with more easily identifiable and highly heritable traits can simplify breeding processes. In this study, two parental soybean genotypes contrasting in seed hilum size, yield, and seed quality, as well as 175 F9 recombinant inbred lines (RILs) derived from these parents, were grown in 3 years. The h2 b of four hilum size, two quality and two yield traits, ranged from 0.72 to 0.87. The four observed hilum size traits exhibited significant correlation (P < 0.05) with most of seed yield and quality traits, as indicated by correlation coefficients varying from -0.35 to 0.42, which suggests that hilum size could be considered as a proxy trait for soybean yield and quality. Interestingly, among 53 significant quantitative trait loci (QTLs) with logarithm of odds (LOD) values ranging from 2.51 to 6.69 and accounting for 6.40-16.10% of genetic variation, three loci encoding hilum size, qSH6.2, qSH8, and qSH10, colocated with QTLs for seed yield and quality traits, demonstrating that genes impacting seed hilum size colocalize in part with genes acting on soybean yield and quality. As a result of the breeding efforts and field observations described in this work, it is reasonable to conclude that optimizing hilum size through selection focused on a few QTLs may be useful for breeding new high yielding soybean varieties with favorable quality characteristics.


LG5, a Novel Allele of EUI1, Regulates Grain Size and Flag Leaf Angle in Rice.

  • Zhen Li‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Grain size and flag leaf angle are two important traits that determining grain yield in rice. However, the mechanisms regulating these two traits remain largely unknown. In this study, a rice long grain 5 (lg5) mutant with a large flag leaf angle was identified, and map-based cloning revealed that a single base substitution followed by a 2 bp insertion in the LOC_Os05g40384 gene resulted in larger grains, a larger flag leaf angle, and higher plant height than the wild type. Sequence analysis revealed that lg5 is a novel allele of elongated uppermost internode-1 (EUI1), which encodes a cytochrome P450 protein. Functional complementation and overexpression tests showed that LG5 can rescue the bigger grain size and larger flag leaf angle in the Xiushui11 (XS) background. Knockdown of the LG5 transcription level by RNA interference resulted in elevated grain size and flag leaf angle in the Nipponbare (NIP) background. Morphological and cellular analyses suggested that LG5 regulated grain size and flag leaf angle by promoting cell expansion and cell proliferation. Our results provided new insight into the functions of EUI1 in rice, especially in regulating grain size and flag leaf angle, indicating a potential target for the improvement of rice breeding.


A multi-trait GWAS-based genetic association network controlling soybean architecture and seed traits.

  • Mengrou Niu‎ et al.
  • Frontiers in plant science‎
  • 2023‎

Ideal plant architecture is essential for enhancing crop yields. Ideal soybean (Glycine max) architecture encompasses an appropriate plant height, increased node number, moderate seed weight, and compact architecture with smaller branch angles for growth under high-density planting. However, the functional genes regulating plant architecture are far not fully understood in soybean. In this study, we investigated the genetic basis of 12 agronomic traits in a panel of 496 soybean accessions with a wide geographical distribution in China. Analysis of phenotypic changes in 148 historical elite soybean varieties indicated that seed-related traits have mainly been improved over the past 60 years, with targeting plant architecture traits having the potential to further improve yields in future soybean breeding programs. In a genome-wide association study (GWAS) of 12 traits, we detected 169 significantly associated loci, of which 61 overlapped with previously reported loci and 108 new loci. By integrating the GWAS loci for different traits, we constructed a genetic association network and identified 90 loci that were associated with a single trait and 79 loci with pleiotropic effects. Of these 79 loci, 7 hub-nodes were strongly linked to at least three related agronomic traits. qHub_5, containing the previously characterized Determinate 1 (Dt1) locus, was associated not only with plant height and node number (as determined previously), but also with internode length and pod range. Furthermore, we identified qHub_7, which controls three branch angle-related traits; the candidate genes in this locus may be beneficial for breeding soybean with compact architecture. These findings provide insights into the genetic relationships among 12 important agronomic traits in soybean. In addition, these studies uncover valuable loci for further functional gene studies and will facilitate molecular design breeding of soybean architecture.


A transformer-based genomic prediction method fused with knowledge-guided module.

  • Cuiling Wu‎ et al.
  • Briefings in bioinformatics‎
  • 2023‎

Genomic prediction (GP) uses single nucleotide polymorphisms (SNPs) to establish associations between markers and phenotypes. Selection of early individuals by genomic estimated breeding value shortens the generation interval and speeds up the breeding process. Recently, methods based on deep learning (DL) have gained great attention in the field of GP. In this study, we explore the application of Transformer-based structures to GP and develop a novel deep-learning model named GPformer. GPformer obtains a global view by gleaning beneficial information from all relevant SNPs regardless of the physical distance between SNPs. Comprehensive experimental results on five different crop datasets show that GPformer outperforms ridge regression-based linear unbiased prediction (RR-BLUP), support vector regression (SVR), light gradient boosting machine (LightGBM) and deep neural network genomic prediction (DNNGP) in terms of mean absolute error, Pearson's correlation coefficient and the proposed metric consistent index. Furthermore, we introduce a knowledge-guided module (KGM) to extract genome-wide association studies-based information, which is fused into GPformer as prior knowledge. KGM is very flexible and can be plugged into any DL network. Ablation studies of KGM on three datasets illustrate the efficiency of KGM adequately. Moreover, GPformer is robust and stable to hyperparameters and can generalize to each phenotype of every dataset, which is suitable for practical application scenarios.


Escin suppresses HMGB1-induced overexpression of aquaporin-1 and increased permeability in endothelial cells.

  • Changjun Chen‎ et al.
  • FEBS open bio‎
  • 2019‎

Escin, a natural triterpene saponin mixture obtained from the horse chestnut tree (Aesculus hippocastanum), has been used for the treatment of chronic venous insufficiency (CVI), hemorrhoids, and edema. However, it is unclear how escin protects against endothelial barrier dysfunction induced by pro-inflammatory high mobility group protein 1 (HMGB1). Here, we report that escin can suppress (a) HMGB1-induced overexpression of the aquaporin-1 (AQP1) water channel in endothelial cells and (b) HMGB1-induced increases in endothelial cell permeability. This is the first report that escin inhibits AQP1 and alleviates barrier dysfunction in HMGB1-induced inflammatory response.


Association Mapping Reveals Novel Genetic Loci Contributing to Flooding Tolerance during Germination in Indica Rice.

  • Mengchen Zhang‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Rice (Oryza sativa L.) is the only cereal crop that possesses the ability to germinate under flooded or other oxygen-deficient conditions. Rapid elongation of the coleoptile is a perfect response to flooding during germination, with coleoptile length differing among various rice varieties. Despite multiple studies have uncovered valuable information concerning this trait by focusing on the physiological metabolism of oxygen stress, the underlying genetic mechanism still remains unknown. In the present study, we screened coleoptile lengths of 432 indica varieties germinated in two environments (normal and flooded) and found more variation existing in flooded coleoptile length (FCL) rather than in normal coleoptile length (NCL). With the phenotypic data of NCL, FCL and FTI (flooding tolerance index), a genome-wide association study was performed by using 5291 single nucleotide polymorphism (SNP) markers. We detected 2, 11, and 9 significant SNPs under a mixed linear mode for NCL, FCL, and FTI, respectively. Of these SNPs, five were shared by FCL and FTI. Haplotype and phenotype effect analysis on the highest ranking locus indicated one of the two haplotypes contributed to coleoptile elongation remarkably. To better understand the controlling gene of this locus, reported expression profile data was applied. We focused on LOC_Os06g03520, a candidate gene which was highly induced by anoxia (∼507 fold). Sequence analysis in 51 varieties demonstrated Hap.2 associated perfectly with flooding tolerance. Further studies on this gene may help explore the molecular mechanism of rice flooding tolerance during germination. We believe our discoveries may conduce to isolating major genes and aid the improvement of flooding tolerance in modern breeding programs.


Genome-Wide Association Study of Rice Rooting Ability at the Seedling Stage.

  • Xin Xu‎ et al.
  • Rice (New York, N.Y.)‎
  • 2020‎

Rice rooting ability is a complex agronomical trait that displays heterosis and plays an important role in rice growth and production. Only a few quantitative trait loci (QTLs) have been identified by bi-parental population. More genes or QTLs are required to dissect the genetic architecture of rice rooting ability.


Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping.

  • Qing Lu‎ et al.
  • Planta‎
  • 2016‎

Totally, 23 loci were detected, and 383 candidate genes were identified, and four of these candidate genes, Os01g0392100, Os04g0630000, Os01g0904700 and Os07g0615000, were regarded as promising targets. Direct-seeding cultivation is becoming popular in rice (Oryza sativa L.)-planting countries because it is labor- and time-efficient. However, low seedling establishment and slow seedling emergence have restricted the application and popularity of the technique. Mesocotyl elongation and shoot length are two important traits that can enhance rice seedling emergence. A single nucleotide polymorphism (SNP) is a genome sequence variation caused by a single base within a population, and SNPs evenly distributed throughout the genomes of plant species. In this study, a genome-wide association study (GWAS), based on 4136 SNPs, was performed using a compressed mixed linear model that accounted for population structure and relative kinship to detect novel loci for the two traits. Totally, 23 loci were identified, including five loci located known QTLs region. For the mesocotyl elongation, 17 major loci were identified, explaining ~19.31 % of the phenotypic variation. For the shoot length, six major loci were detected, explaining ~ 39.79 % of the phenotypic variation. In total, 383 candidate genes were included in a 200-kb genomic region (± 100 kb of each locus). Additionally, 32 SNPs were identified in 30 candidate genes. Relative expression level analyses indicated that four candidate genes containing SNP variations, Os01g0392100, Os04g0630000, Os01g0904700 and Os07g0615000, represented promising targets. Finally, eight elite accessions with long mesocotyl and shoot lengths were chosen as breeding donors for further rice direct-seeding variety modifications.


Identification, expression pattern and functional characterization of As-kip2 in diapause embryo restarting process of Artemia sinica.

  • Mengchen Zhang‎ et al.
  • Gene‎
  • 2017‎

Proper control of the cellular processes requires a variety of regulatory proteins that are involved in the cell cycle, proliferation and apoptosis. Cyclin-dependent kinase inhibitor (CKI) negatively regulates transcription and arrests the cell cycle in G1 phase. KIP2 is a member of CKI family, which could inhibit proliferation by tight-binding with several cyclin-CDK complexes. During the embryonic development of the brine shrimp, Artemia sinica, KIP2 plays a key role in the cell cycle regulation, but the specific mechanisms remain unknown. Herein, the 1023bp full-length cDNA of kip2 from A. sinica was cloned. The mRNA expression patterns of As-kip2, As-carp-1 in different development stages and pattern of As-kip2 under environmental stresses were investigated. In situ hybridization of As-kip2 mRNA and immunofluorescence of As-CARP-1 protein showed no tissue or organ specificity. Furthermore, western blotting showed the expressions levels of As-KIP2, As-E2F1, As-p53, As-cyclin E, As-SODD protein, and pattern of As-KIP2 under environmental stresses. Our research revealed that As-KIP2 plays crucial role in the restarting process of diapause embryo in Artemia sinica.


Engineering Thermotoga maritima β-glucosidase for improved alkyl glycosides synthesis by site-directed mutagenesis.

  • Yemin Xue‎ et al.
  • Journal of industrial microbiology & biotechnology‎
  • 2021‎

Alkyl glycosides are well-characterized nonionic surfactants, and can be prepared by transglycosylation reactions with retaining GH1 glycosidases being normally used for this purpose. The produced alkyl glycosides can also be hydrolyzed by the glycosidase, and hence, the yields of alkyl glycosides can be too low for industrial use. To improve the transglycosylation-to-hydrolysis ratio for a β-glucosidase from Thermotoga maritima (TmBglA) for the synthesis of alkyl glycoside, six mutants (N222F, N223C, N223Q, G224A, Y295F, and F414S) were produced. N222F, N223C, N223Q, G224A improved catalytic activity, F295Y and F414S are hydrolytically crippled with p-nitrophenol-β-d-glucopyranoside (pNPG) as substrate with an 85 and 70-fold decrease in apparent kcat, respectively; N222F shows the highest kcat/km value for pNPG. The substrate selectivity altered from pNPG to pNP-β-d-fucoside for N222F, F295Y, and F414S and from cellubiose to gentiobiose for N222F and F414S. Using pNPG (34 mM) and hexanol 80% (vol/vol), N222F, Y295F, and F414S synthesized hexyl-β-glycoside (HG) yields of 84.7%, 50.9%, and 54.1%, respectively, HG increased from 14.49 (TmBglA) to 22.8 mM (N222F) at 2 hr by 57.42%. However, this higher transglycosylation effect depended on that three mutants creates an environment more suited for hexanol in the active site pocket, and consequently suppressed its HG hydrolysis.


Overexpression of CHAF1A is associated with poor prognosis, tumor immunosuppressive microenvironment and treatment resistance.

  • Xia Sun‎ et al.
  • Frontiers in genetics‎
  • 2023‎

Background: As distinct marker of proliferating cells, chromatin assembly factor-1 (CAF-1) was critical in DNA replication. However, there is paucity information about the clinical significance, functions and co-expressed gene network of CHAF1A, the major subunit in CAF-1, in cancer. Methods: Bioinformatic analysis of CHAF1A and its co-expression gene network were performed using various public databases. Functional validation of CHAF1A was applied in breast cancer. Results: Overexpression of CHAF1A was found in 20 types of cancer tissues. Elevated expression of CHAF1A was positively correlated with breast cancer progression and poor patients' outcome. The analysis of co-expression gene network demonstrated CHAF1A was associated with not only cell proliferation, DNA repair, apoptosis, but cancer metabolism, immune system, and drug resistance. More importantly, higher expression of CHAF1A was positively correlated with immunosuppressive microenvironment and resistance to endocrine therapy and chemotherapy. Elevated expression of CHAF1A was confirmed in breast cancer tissues. Silencing of CHAF1A can significantly inhibit cell proliferation in MDA-MB-231 cells. Conclusion: The current work suggested that overexpression of CHAF1A can be used as diagnostic and poor prognostic biomarker of breast cancer. Higher expression of CHAF1A induced fast resistance to endocrine therapy and chemotherapy, it may be a promising therapeutic target and a biomarker to predict the sensitivity of immunotherapy in breast cancer.


Self-Confirmation and Ascertainment of the Candidate Genomic Regions of Complex Trait Loci - A None-Experimental Solution.

  • Lishi Wang‎ et al.
  • PloS one‎
  • 2016‎

Over the past half century, thousands of quantitative trait loci (QTL) have been identified by using animal models and plant populations. However, the none-reliability and imprecision of the genomic regions of these loci have remained the major hurdle for the identification of the causal genes for the correspondent traits. We used a none-experimental strategy of strain number reduction for testing accuracy and ascertainment of the candidate region for QTL. We tested the strategy in over 400 analyses with data from 47 studies. These studies include: 1) studies with recombinant inbred (RI) strains of mice. We first tested two previously mapped QTL with well-defined genomic regions; We then tested additional four studies with known QTL regions; and finally we examined the reliability of QTL in 38 sets of data which are produced from relatively large numbers of RI strains, derived from C57BL/6J (B6) X DBA/2J (D2), known as BXD RI mouse strains; 2) studies with RI strains of rats and plants; and 3) studies using F2 populations in mice, rats and plants. In these cases, our method identified the reliability of mapped QTL and localized the candidate genes into the defined genomic regions. Our data also suggests that LRS score produced by permutation tests does not necessarily confirm the reliability of the QTL. Number of strains are not the reliable indicators for the accuracy of QTL either. Our strategy determines the reliability and accuracy of the genomic region of a QTL without any additional experimental study such as congenic breeding.


Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics.

  • Xinxin Yi‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromosome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with 3 published soybeans (WM82, ZH13, and W05), which identified 5 large inversions and 2 large translocations specific to JD17, 20,984-46,912 presence-absence variations spanning 13.1-46.9 Mb in size. A total of 1,695,741-3,664,629 SNPs and 446,689-800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: