Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy.

  • Shweta R Ugaonkar‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2015‎

Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy.


HSV-2-driven increase in the expression of α4β7 correlates with increased susceptibility to vaginal SHIV(SF162P3) infection.

  • Diana Goode‎ et al.
  • PLoS pathogens‎
  • 2014‎

The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.


A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

  • Mayla Hsu‎ et al.
  • AIDS research and human retroviruses‎
  • 2014‎

Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.


MIV-150-containing intravaginal rings protect macaque vaginal explants against SHIV-RT infection.

  • Louise A Ouattara‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2014‎

Recent studies demonstrated that intravaginal rings (IVRs) containing 100 mg of the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 significantly protect macaques against a chimeric simian-human immunodeficiency virus that expresses the HIV-1 HxB2 reverse transcriptase (SHIV-RT) when present before and after vaginal challenge. The objectives of this study were to (i) evaluate the pharmacodynamics (PD) of MIV-150 in vaginal fluids (VF) and in ectocervical and vaginal tissues following 100-mg MIV-150 IVR exposure and to (ii) gain more insight whether pharmacokinetics (PK) of MIV-150 can predict PD. MIV-150 in VF collected at 1 day and 14 days post-MIV-150 IVR insertion inhibited ex vivo SHIV-RT infection in vaginal biopsy specimens from untreated animals (not carrying IVRs) in a dose-dependent manner. Previous PK studies demonstrated a significant increase of ectocervical and vaginal tissue MIV-150 concentrations 14 days versus 1 day post-IVR insertion, with the highest increase in vaginal tissue. Therefore, we tested PD of MIV-150 in tissues 14 days post-MIV-150 IVR insertion. Ex vivo SHIV-RT infection of vaginal, but not ectocervical, tissues collected 14 days post-MIV-150 IVR insertion was significantly inhibited compared to infection at the baseline (prior to MIV-150 IVR exposure). No changes in vaginal and ectocervical tissue infection were observed after placebo IVR exposure. Overall, these data underscore the use of the ex vivo macaque explant challenge models to evaluate tissue and VF PK/PD of candidate microbicides before in vivo animal efficacy studies. The data support further development of MIV-150-containing IVRs.


A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants.

  • Patrick Barnable‎ et al.
  • PloS one‎
  • 2014‎

To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51-62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65-74%) did not significantly differ from CG (32-45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.


Exposure to MIV-150 from a high-dose intravaginal ring results in limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques.

  • Mayla Hsu‎ et al.
  • PloS one‎
  • 2014‎

When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.


PolyICLC Exerts Pro- and Anti-HIV Effects on the DC-T Cell Milieu In Vitro and In Vivo.

  • Meropi Aravantinou‎ et al.
  • PloS one‎
  • 2016‎

Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antiviral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes will inform HIV prevention and treatment strategies. The long double-stranded RNA (dsRNA) viral mimic, polyinosinic polycytidylic acid (polyIC, PIC) potently stimulates DCs to focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses in vivo. Stabilized polyICLC (PICLC) is being developed for vaccine adjuvant applications in humans, making it critical to understand how mDC sensing of PICLC influences HIV infection. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC (vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended this work to in vivo macaque rectal transmission studies by administering PICLC with or before rectal SIVmac239 (SIVwt) or SIVmac239ΔNef (SIVΔNef) challenge. Like PIC, PICLC activated DCs and T cells, increased expression of α4β7 and CD169, and induced type I IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differentially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly, this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVΔNef-infected animals, SIVΔNef viremia was higher, in line with the importance of DC and T cell activation in SIVΔNef replication. In the right combination anti-HIV strategy, PICLC has the potential to limit HIV infection and boost HIV immunity.


The nonnucleoside reverse transcription inhibitor MIV-160 delivered from an intravaginal ring, but not from a carrageenan gel, protects against simian/human immunodeficiency virus-RT Infection.

  • Meropi Aravantinou‎ et al.
  • AIDS research and human retroviruses‎
  • 2012‎

We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC(50), greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.


A single dose of a MIV-150/Zinc acetate gel provides 24 h of protection against vaginal simian human immunodeficiency virus reverse transcriptase infection, with more limited protection rectally 8-24 h after gel use.

  • Jessica Kenney‎ et al.
  • AIDS research and human retroviruses‎
  • 2012‎

Previously we showed that repeated vaginal application of a MIV-150/zinc acetate carrageenan (MIV-150/ZA/CG) gel and a zinc acetate carrageenan (ZA/CG) gel significantly protected macaques from vaginal simian human immunodeficiency virus reverse transcriptase (SHIV-RT) infection. Gels were applied either daily for 2 weeks or every other day for 4 weeks, and the animals were challenged 4-24 h later. Herein, we examined the effects of a single vaginal dose administered either before or after virus challenge. Encouraged by the vaginal protection seen with MIV-150/ZA/CG, we also tested it rectally. Vaginal applications of MIV-150/ZA/CG, ZA/CG, and CG gel were performed once 8-24 h before, 1 h after, or 24 h before and 1 h after vaginal challenge. Rectal applications of MIV-150/ZA/CG and CG gel were performed once 8 or 24 h before rectal challenge. While vaginal pre-challenge and pre/post-challenge application of MIV-150/ZA/CG gel offered significant protection (88%, p<0.002), post-challenge application alone did not significantly protect. ZA/CG gel reduced infection prechallenge, but not significantly, and the effect was completely lost post-challenge. Rectal application of MIV-150/ZA/CG gel afforded limited protection against rectal challenge when applied 8-24 h before challenge. Thus, MIV-150/ZA/CG gel is a highly effective vaginal microbicide that demonstrates 24 h of protection from vaginal infection and may demonstrate efficacy against rectal infection when given close to the time of HIV exposure.


Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides.

  • Jessica Kenney‎ et al.
  • AIDS research and human retroviruses‎
  • 2014‎

Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.


Retinoic acid imprints a mucosal-like phenotype on dendritic cells with an increased ability to fuel HIV-1 infection.

  • Natalia Guerra-Pérez‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

The tissue microenvironment shapes the characteristics and functions of dendritic cells (DCs), which are important players in HIV infection and dissemination. Notably, DCs in the gut have the daunting task of orchestrating the balance between immune response and tolerance. They produce retinoic acid (RA), which imprints a gut-homing phenotype and influences surrounding DCs. To investigate how the gut microenvironment impacts the ability of DCs to drive HIV infection, we conditioned human immature monocyte-derived DCs (moDCs) with RA (RA-DCs), before pulsing them with HIV and mixing them with autologous T cells. RA-DCs showed a semimature, mucosal-like phenotype and released higher amounts of TGF-β1 and CCL2. Using flow cytometry, Western blot, and microscopy, we determined that moDCs express the cell adhesion molecule mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and that RA increases its expression. MAdCAM-1 was also detected on a small population of DCs in rhesus macaque (Macaca mulata) mesenteric lymph node. RA-DCs formed more DC-T cell conjugates and promoted significantly higher HIV replication in DC-T cell mixtures compared with moDCs. This correlated with the increase in MAdCAM-1 expression. Blocking MAdCAM-1 partially inhibited the enhanced HIV replication. In summary, RA influences DC phenotype, increasing their ability to exacerbate HIV infection. We describe a previously unknown mechanism that may contribute to rapid HIV spread in the gut, a major site of HIV replication after mucosal exposure.


An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques.

  • Nina Derby‎ et al.
  • Drug delivery and translational research‎
  • 2017‎

Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.


Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques.

  • Meropi Aravantinou‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.


In search of the optimal delivery method for anti-HIV microbicides: are intravaginal rings the way forward?

  • Nina Derby‎ et al.
  • Expert review of anti-infective therapy‎
  • 2013‎

No abstract available


Characterization of peripheral and mucosal immune responses in rhesus macaques on long-term tenofovir and emtricitabine combination antiretroviral therapy.

  • Edith Jasny‎ et al.
  • Journal of acquired immune deficiency syndromes (1999)‎
  • 2012‎

The goal of antiretroviral therapy (ART) is to suppress virus replication to limit immune system damage. Some have proposed combining ART with immune therapies to boost antiviral immunity. For this to be successful, ART must not impair physiological immune function.


Efficacy of Carraguard-based microbicides in vivo despite variable in vitro activity.

  • Stuart G Turville‎ et al.
  • PloS one‎
  • 2008‎

Anti-HIV microbicides are being investigated in clinical trials and understanding how promising strategies work, coincident with demonstrating efficacy in vivo, is central to advancing new generation microbicides. We evaluated Carraguard and a new generation Carraguard-based formulation containing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (PC-817). Since dendritic cells (DCs) are believed to be important in HIV transmission, the formulations were tested for the ability to limit DC-driven infection in vitro versus vaginal infection of macaques with RT-SHIV (SIVmac239 bearing HIV reverse transcriptase). Carraguard showed limited activity against cell-free and mature DC-driven RT-SHIV infections and, surprisingly, low doses of Carraguard enhanced infection. However, nanomolar amounts of MIV-150 overcame enhancement and blocked DC-transmitted infection. In contrast, Carraguard impeded infection of immature DCs coincident with DC maturation. Despite this variable activity in vitro, Carraguard and PC-817 prevented vaginal transmission of RT-SHIV when applied 30 min prior to challenge. PC-817 appeared no more effective than Carraguard in vivo, due to the limited activity of a single dose of MIV-150 and the dominant barrier effect of Carraguard. However, 3 doses of MIV-150 in placebo gel at and around challenge limited vaginal infection, demonstrating the potential activity of a topically applied NNRTI. These data demonstrate discordant observations when comparing in vitro and in vivo efficacy of Carraguard-based microbicides, highlighting the difficulties in testing putative anti-viral strategies in vitro to predict in vivo activity. This work also underscores the potential of Carraguard-based formulations for the delivery of anti-viral drugs to prevent vaginal HIV infection.


A Novel Microbicide/Contraceptive Intravaginal Ring Protects Macaque Genital Mucosa against SHIV-RT Infection Ex Vivo.

  • Guillermo Villegas‎ et al.
  • PloS one‎
  • 2016‎

Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.


Multipurpose Prevention Approaches with Antiretroviral-Based Formulations.

  • Ninochka Jean-Pierre‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2016‎

We compared the preclinical safety and efficacy of tenofovir (TFV) 1% gel with that of MZC gel [containing 50 μM MIV-150, 14 mM Zn(O2CCH3)2(H2O)2, and 3% carrageenan] through a series of in vitro, ex vivo, and in vivo assays. The two gels showed good antiviral therapeutic indexes (50% cytotoxic concentration/50% effective concentration ratios; range, >25 to 800). MZC showed greater anti-simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) activity than TFV 1% gel in rhesus macaque vaginal explants. MZC protected mice from vaginal herpes simplex virus 2 (HSV-2) challenge (P < 0.0001), but the TFV 1% gel did not.


Rectal HSV-2 Infection May Increase Rectal SIV Acquisition Even in the Context of SIVΔnef Vaccination.

  • Natalia Guerra-Pérez‎ et al.
  • PloS one‎
  • 2016‎

Prevalent HSV-2 infection increases the risk of HIV acquisition both in men and women even in asymptomatic subjects. Understanding the impact of HSV-2 on the mucosal microenvironment may help to identify determinants of susceptibility to HIV. Vaginal HSV-2 infection increases the frequency of cells highly susceptible to HIV in the vaginal tissue of women and macaques and this correlates with increased susceptibility to vaginal SHIV infection in macaques. However, the effect of rectal HSV-2 infection on HIV acquisition remains understudied. We developed a model of rectal HSV-2 infection in macaques in combination with rectal SIVmac239Δnef (SIVΔnef) vaccination and our results suggest that rectal HSV-2 infection may increase the susceptibility of macaques to rectal SIVmac239 wild-type (wt) infection even in SIVΔnef-infected animals. Rectal SIVΔnef infection/vaccination protected 7 out of 7 SIVΔnef-infected macaques from SIVmac239wt rectal infection (vs 12 out of 16 SIVΔnef-negative macaques), while 1 out of 3 animals co-infected with SIVΔnef and HSV-2 acquired SIVmac239wt infection. HSV-2/SIVmac239wt co-infected animals had increased concentrations of inflammatory factors in their plasma and rectal fluids and a tendency toward higher acute SIVmac239wt plasma viral load. However, they had higher blood CD4 counts and reduced depletion of CCR5+ CD4+ T cells compared to SIVmac239wt-only infected animals. Thus, rectal HSV-2 infection generates a pro-inflammatory environment that may increase susceptibility to rectal SIV infection and may impact immunological and virological parameters during acute SIV infection. Studies with larger number of animals are needed to confirm these findings.


Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus.

  • Keith Levendosky‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2015‎

Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: