Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways.

  • Jiajia Wang‎ et al.
  • Science advances‎
  • 2020‎

Mutations in the polycomb repressive complex 2 (PRC2) can cause Weaver-like syndrome, wherein a patient cohort exhibits abnormal white matter; however, PRC2 functions in CNS myelination and regeneration remain elusive. We show here that H3K27me3, the PRC2 catalytic product, increases during oligodendrocyte maturation. Depletion of embryonic ectoderm development (EED), a core PRC2 subunit, reduces differentiation of oligodendrocyte progenitors (OPCs), and causes an OPC-to-astrocyte fate switch in a region-specific manner. Although dispensable for myelin maintenance, EED is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptomic analyses indicate that EED establishes a chromatin landscape that selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling, and senescence-associated programs. Blocking WNT or BMP pathways partially restores differentiation defects in EED-deficient OPCs. Thus, our findings reveal that EED/PRC2 is a crucial epigenetic programmer of CNS myelination and repair, while demonstrating a spatiotemporal-specific role of PRC2-mediated chromatin silencing in shaping oligodendrocyte identity and lineage plasticity.


A reciprocal regulatory loop between TAZ/YAP and G-protein Gαs regulates Schwann cell proliferation and myelination.

  • Yaqi Deng‎ et al.
  • Nature communications‎
  • 2017‎

Schwann cell (SC) myelination in the peripheral nervous system is essential for motor function, and uncontrolled SC proliferation occurs in cancer. Here, we show that a dual role for Hippo effectors TAZ and YAP in SC proliferation and myelination through modulating G-protein expression and interacting with SOX10, respectively. Developmentally regulated mutagenesis indicates that TAZ/YAP are critical for SC proliferation and differentiation in a stage-dependent manner. Genome-wide occupancy mapping and transcriptome profiling reveal that nuclear TAZ/YAP promote SC proliferation by activating cell cycle regulators, while targeting critical differentiation regulators in cooperation with SOX10 for myelination. We further identify that TAZ targets and represses Gnas, encoding Gαs-protein, which opposes TAZ/YAP activities to decelerate proliferation. Gnas deletion expands SC precursor pools and blocks peripheral myelination. Thus, the Hippo/TAZ/YAP and Gαs-protein feedback circuit functions as a fulcrum balancing SC proliferation and differentiation, providing insights into molecular programming of SC lineage progression and homeostasis.


Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.

  • Qinjie Weng‎ et al.
  • Cell stem cell‎
  • 2019‎

The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.


Dihydroartemisinin Inhibits Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular AMD.

  • Xun Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Purpose: Choroidal neovascularization (CNV) is the main pathogenic process and a leading cause of severe vision loss in neovascular age-related macular degeneration (AMD). We investigated the antiangiogenic efficacy of dihydroartemisinin (DHA) in an experimental laser-induced CNV mouse model. Methods: After fluorescein angiography confirmed that CNV was induced by laser photocoagulation in C57BL/6J mice, DHA or vehicle was given by intragastric administration once a day. On day 6 and day 12, fluorescein angiography, optic coherence tomography, and flat-mounting analysis were performed to grade CNV leakage, measure CNV thickness and evaluate CNV areas, respectively. Immunofluorescence staining and Western blot analysis were performed to evaluate the expression of NF-κB, VEGF, and VEGFR2. To confirm the safety of intragastric DHA application, changes in retinal morphology and neural cell apoptosis were tested by histopathological examination and TUNEL assay, and retinal function was determined by electroretinogram (ERG). Results: Intragastric administration of DHA significantly suppressed CNV leakage and CNV formation in both thickness and area. Immunofluorescence showed that DHA suppressed VEGFR2 and NF-κB p65 expression in laser-induced lesions. Compared to the normal group, the protein expression of VEGF, VGFER2, NF-κB p65, and NF-κB1 p50 increased significantly in the vehicle group after laser photocoagulation, while it was profoundly inhibited by DHA treatment. In addition, histopathological examination, TUNEL analysis, and ERG test showed no obvious evidence of retinal toxicity caused by DHA. Conclusion: Systemic administration of DHA can effectively inhibit laser-induced CNV formation in mice, which might be due to the suppression of the classic NF-κB signaling pathway and downregulation of VEGFR2 and VEGF expression. The current results suggest that DHA could be a natural potential alternative therapeutic strategy for neovascular AMD.


LIN28B inhibition sensitizes cells to p53-restoring PPI therapy through unleashed translational suppression.

  • Jiahao Shi‎ et al.
  • Oncogenesis‎
  • 2022‎

p53 is the most highly mutated tumor suppressor across multiple types of human cancers. The level and function of p53 are fine-tuned through multifaced mechanisms in which the protein-protein interaction between p53 and MDM2 is considered as a major circuit. Recent studies suggest therapeutic strategy attempts to restore p53 function by small molecule inhibitors targeting p53-MDM2 interaction can be a promising direction in treating cancers with wild-type or functional p53. Currently, clinical tests of the p53-MDM2 protein-protein interaction inhibitors (PPIs) are underway. However, it remains elusive about the biomarkers that may predict the therapeutic responses to those inhibitors. Here we report that RNA-binding protein LIN28B directly regulates p53 through binding to the 5'΄ untranslated region of p53 mRNA and blocks its translation by competing with a translation enhancer protein, ribosomal protein L26 (RPL26). This regulatory mechanism of LIN28B does not involve let-7 maturation or the canonical protein turnover pathway of p53. Furthermore, we show that inhibition of LIN28B unleashes the translational suppression of p53 through RPL26, and leads to enhanced sensitivities of cancer cells to inhibitors of p53-MDM2 interaction. Together, we demonstrate a competitive regulatory mechanism of p53 by LIN28B, which has important implications in developing biomarkers to the therapies aiming to reinstate p53 function.


Gestational diabetes in mice induces hematopoietic memory that affects the long-term health of the offspring.

  • Vinothini Govindarajah‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.


Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination.

  • Danyang He‎ et al.
  • Nature neuroscience‎
  • 2016‎

Mutations in CHD7, encoding ATP-dependent chromodomain helicase DNA-binding protein 7, in CHARGE syndrome lead to multiple congenital anomalies, including craniofacial malformations, neurological dysfunction and growth delay. Mechanisms underlying the CNS phenotypes remain poorly understood. We found that Chd7 is a direct transcriptional target of oligodendrogenesis-promoting factors Olig2 and Smarca4/Brg1 and is required for proper onset of CNS myelination and remyelination. Genome-occupancy analyses in mice, coupled with transcriptome profiling, revealed that Chd7 interacted with Sox10 and targeted the enhancers of key myelinogenic genes. These analyses identified previously unknown Chd7 targets, including bone formation regulators Osterix (also known as Sp7) and Creb3l2, which are also critical for oligodendrocyte maturation. Thus, Chd7 coordinates with Sox10 to regulate the initiation of myelinogenesis and acts as a molecular nexus of regulatory networks that account for the development of a seemingly diverse array of lineages, including oligodendrocytes and osteoblasts, pointing to previously uncharacterized Chd7 functions in white matter pathogenesis in CHARGE syndrome.


Regulation of intraocular pressure by microRNA cluster miR-143/145.

  • Xinyu Li‎ et al.
  • Scientific reports‎
  • 2017‎

Glaucoma is a major cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP), which causes optic nerve damage and retinal ganglion cell death, is the primary risk factor for blindness in glaucoma patients. IOP is controlled by the balance between aqueous humor secretion from the ciliary body (CB) and its drainage through the trabecular meshwork (TM). How microRNAs (miRs) regulate IOP and glaucoma in vivo is largely unknown. Here we show that miR-143 and miR-145 expression is enriched in the smooth muscle and trabecular meshwork in the eye. Targeted deletion of miR-143/145 in mice results in significantly reduced IOP, consistent with an ~2-fold increase in outflow facilities. However, aqueous humor production in the same mice appears to be normal based on a microbeads-induced glaucoma model. Mechanistically, we found that miR-143/145 regulates actin dynamics and the contractility of TM cells, consistent with its regulation of actin-related protein complex (ARPC) subunit 2, 3, and 5, as well as myosin light chain kinase (MLCK) in these cells. Our data establish miR-143/145 as important regulators of IOP, which may have important therapeutic implications in glaucoma.


miR-143 Regulates Lysosomal Enzyme Transport across the Blood-Brain Barrier and Transforms CNS Treatment for Mucopolysaccharidosis Type I.

  • Yi Lin‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

During brain maturation, cation-independent mannose-6-phosphate receptor (CI-MPR), a key transporter for lysosomal hydrolases, decreases significantly on the blood-brain barrier (BBB). Such a phenomenon leads to poor brain penetration of therapeutic enzymes and subsequent failure in reversing neurological complications in patients with neuropathic lysosomal storage diseases (nLSDs), such as Hurler syndrome (severe form of mucopolysaccharidosis type I [MPS I]). In this study, we discover that upregulation of microRNA-143 (miR-143) contributes to the decline of CI-MPR on the BBB during development. Gain- and loss-of-function studies showed that miR-143 inhibits CI-MPR expression and its transport function in human endothelial cells in vitro. Genetic removal of miR-143 in MPS I mice enhances CI-MPR expression and improves enzyme transport across the BBB, leading to brain metabolic correction, pathology normalization, and correction of neurological functional deficits 5 months after peripheral protein delivery at clinically relevant levels that derived from erythroid/megakaryocytic cells via hematopoietic stem cell-mediated gene therapy, when otherwise no improvement was observed in MPS I mice at a parallel setting. These studies not only uncover a novel role of miR-143 as an important modulator for the developmental decline of CI-MPR on the BBB, but they also demonstrate the functional significance of depleting miR-143 for "rescuing" BBB-anchored CI-MPR on advancing CNS treatment for nLSDs.


Urine protein in patients with type I hypersensitivity is indicative of reversible renal tube injury.

  • Yong Cao‎ et al.
  • Life sciences‎
  • 2022‎

In our clinical work, some patients with type I hypersensitivity could be detected protein in their urine. This study focused on the early renal injury in patients with type I hypersensitivity.


CDC42 controlled apical-basal polarity regulates intestinal stem cell to transit amplifying cell fate transition via YAP-EGF-mTOR signaling.

  • Zheng Zhang‎ et al.
  • Cell reports‎
  • 2022‎

Epithelial polarity is controlled by a polarity machinery that includes Rho GTPase CDC42 and Scribble/PAR. By using intestinal stem cell (ISC)-specific deletion of CDC42 in olfactomedin-4 (Olfm4)-internal ribosome entry site (IRES)-EGFP/CreERT2;CDC42flox/flox mice, we find that CDC42 loss initiated in the ISCs causes a drastic hyperproliferation of transit amplifying (TA) cells and disrupts epithelial polarity. CDC42-null crypts display expanded TA cell and diminished ISC populations, accompanied by elevated Hippo signaling via YAP/TAZ-Ereg (yes-associated protein/WW domain-containing transcription regulator protein 1-epiregulin) and mechanistic target of rapamycin (mTOR) activation, independent from canonical Wnt signaling. YAP/TAZ conditional knockout (KO) restores the balance of ISC/TA cell populations and crypt proliferation but does not rescue the polarity in CDC42-null small intestine. mTOR or epidermal growth factor receptor (EGFR) inhibitor treatment of CDC42 KO mice exhibits similar rescuing effects without affecting YAP/TAZ signaling. Inducible ablation of Scribble in intestinal epithelial cells mimics that of CDC42 KO defects, including crypt hyperplasia and Hippo signaling activation. Mammalian epithelial polarity regulates ISC/TA cell fate and proliferation via a Hippo-Ereg-mTOR cascade.


Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities.

  • Ravinder Verma‎ et al.
  • Cancer research‎
  • 2023‎

Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations.


Hypometabolism of the left middle/medial frontal lobe on FDG-PET in anti-NMDA receptor encephalitis: Comparison with MRI and EEG findings.

  • Chenpeng Zhang‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

To investigate changes in brain-glucose metabolism in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, and compare results with MRI and electroencephalography (EEG) findings at different disease stages.


MicroRNA-mediated control of oligodendrocyte differentiation.

  • Xianghui Zhao‎ et al.
  • Neuron‎
  • 2010‎

MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating deficits despite an expansion of the oligodendrocyte progenitor pool. To search for miRNAs responsible for the induction of oligodendrocyte maturation, we identified miR-219 and miR-338 as oligodendrocyte-specific miRNAs in spinal cord. Overexpression of these miRNAs is sufficient to promote oligodendrocyte differentiation. Additionally, blockage of these miRNA activities in oligodendrocyte precursor culture and knockdown of miR-219 in zebrafish inhibit oligodendrocyte maturation. miR-219 and miR-338 function in part by directly repressing negative regulators of oligodendrocyte differentiation, including transcription factors Sox6 and Hes5. These findings illustrate that miRNAs are important regulators of oligodendrocyte differentiation, providing new targets for myelin repair.


Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma.

  • Fanghui Lu‎ et al.
  • Cancer cell‎
  • 2016‎

Malignant gliomas exhibit extensive heterogeneity and poor prognosis. Here we identify mitotic Olig2-expressing cells as tumor-propagating cells in proneural gliomas, elimination of which blocks tumor initiation and progression. Intriguingly, deletion of Olig2 resulted in tumors that grow, albeit at a decelerated rate. Genome occupancy and expression profiling analyses reveal that Olig2 directly activates cell-proliferation machinery to promote tumorigenesis. Olig2 deletion causes a tumor phenotypic shift from an oligodendrocyte precursor-correlated proneural toward an astroglia-associated gene expression pattern, manifest in downregulation of platelet-derived growth factor receptor-α and reciprocal upregulation of epidermal growth factor receptor (EGFR). Olig2 deletion further sensitizes glioma cells to EGFR inhibitors and extends the lifespan of animals. Thus, Olig2-orchestrated receptor signaling drives mitotic growth and regulates glioma phenotypic plasticity. Targeting Olig2 may circumvent resistance to EGFR-targeted drugs.


Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation.

  • Chuntao Zhao‎ et al.
  • Nature communications‎
  • 2016‎

Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis.


The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehog-driven medulloblastoma.

  • Xuelian He‎ et al.
  • Nature medicine‎
  • 2014‎

Medulloblastoma, the most common malignant childhood brain tumor, exhibits distinct molecular subtypes and cellular origins. Genetic alterations driving medulloblastoma initiation and progression remain poorly understood. Herein, we identify GNAS, encoding the G protein Gαs, as a potent tumor suppressor gene that, when expressed at low levels, defines a subset of aggressive Sonic hedgehog (SHH)-driven human medulloblastomas. Ablation of the single Gnas gene in anatomically distinct progenitors in mice is sufficient to induce Shh-associated medulloblastomas, which recapitulate their human counterparts. Gαs is highly enriched at the primary cilium of granule neuron precursors and suppresses Shh signaling by regulating both the cAMP-dependent pathway and ciliary trafficking of Hedgehog pathway components. Elevation in levels of a Gαs effector, cAMP, effectively inhibits tumor cell proliferation and progression in Gnas-ablated mice. Thus, our gain- and loss-of-function studies identify a previously unrecognized tumor suppressor function for Gαs that can be found consistently across Shh-group medulloblastomas of disparate cellular and anatomical origins, highlighting G protein modulation as a potential therapeutic avenue.


Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy.

  • Lai Man Natalie Wu‎ et al.
  • Science advances‎
  • 2022‎

Malignant peripheral nerve sheath tumor (MPNST), a highly aggressive Schwann cell (SC)-derived soft tissue sarcoma, arises from benign neurofibroma (NF); however, the identity, heterogeneity and origins of tumor populations remain elusive. Nestin+ cells have been implicated as tumor stem cells in MPNST; unexpectedly, single-cell profiling of human NF and MPNST and their animal models reveal a broad range of nestin-expressing SC lineage cells and dynamic acquisition of discrete cancer states during malignant transformation. We uncover a nestin-negative mesenchymal neural crest-like subpopulation as a previously unknown malignant stem-like state common to murine and human MPNSTs, which correlates with clinical severity. Integrative multiomics profiling further identifies unique regulatory networks and druggable targets against the malignant subpopulations in MPNST. Targeting key epithelial-mesenchymal transition and stemness regulators including ZEB1 and ALDH1A1 impedes MPNST growth. Together, our studies reveal the underlying principles of tumor cell-state evolution and their regulatory circuitries during NF-to-MPNST transformation, highlighting a hitherto unrecognized mesenchymal stem-like subpopulation in MPNST disease progression.


Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair.

  • Chuntao Zhao‎ et al.
  • Developmental cell‎
  • 2018‎

Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.


Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis.

  • Yaqi Deng‎ et al.
  • BMC oral health‎
  • 2018‎

Orthodontic treatment can result in root resorption (RR). Traditional two-dimensional (2D) data exhibit magnification, deformation and positioning problems. Cone beam computed tomography (CBCT) contains more accurate three-dimensional (3D) information. This study identified and qualified the extent and location of root resorption using cone beam computed tomography (CBCT) after comprehensive orthodontic treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: