Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 110 papers

Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.

  • Qing Gao‎ et al.
  • Brain research‎
  • 2016‎

Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. A new voxel-based method named functional connectivity density (FCD) mapping was applied to resting-state functional magnetic resonance imaging data of 55 female MWoA patients and 44 age-matched female healthy controls (HC). Comparing to HC, MWoA patients showed abnormal short-range FCD values in bilateral hippocampus, bilateral insula, right amygdale, right anterior cingulate cortex, bilateral putamen, bilateral caudate nucleus and the prefrontal cortex. The results suggested decreased intraregional connectivity of these pain-related brain regions in female MWoA. In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA.


Effect of handedness on brain activity patterns and effective connectivity network during the semantic task of Chinese characters.

  • Qing Gao‎ et al.
  • Scientific reports‎
  • 2015‎

Increasing efforts have been denoted to elucidating the effective connectivity (EC) among brain regions recruited by certain language task; however, it remains unclear the impact of handedness on the EC network underlying language processing. In particularly, this has not been investigated in Chinese language, which shows several differences from alphabetic language. This study thereby explored the functional activity patterns and the EC network during a Chinese semantic task based on functional MRI data of healthy left handers (LH) and right handers (RH). We found that RH presented a left lateralized activity pattern in cerebral cortex and a right lateralized pattern in cerebellum; while LH were less lateralized than RH in both cerebral and cerebellar areas. The conditional Granger causality method in deconvolved BOLD level further demonstrated more interhemispheric directional connections in LH than RH group, suggesting better bihemispheric coordination and increased interhemispheric communication in LH. Furthermore, we found significantly increased EC from right middle occipital gyrus to bilateral insula (INS) while decreased EC from left INS to left precentral gyrus in LH group comparing to RH group, implying that handedness may differentiate the causal relationship of information processing in integration of visual-spatial analysis and semantic word retrieval of Chinese characters.


The Uyghur population and genetic susceptibility to type 2 diabetes: potential role for variants in CAPN10, APM1 and FUT6 genes.

  • Feifei Zhao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Genome-wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case-control study, we genotyped 13 single-nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267-A, rs1501299-T, and rs3760776-T had a 2.24-fold [OR (95% CI): 1.35-3.71], 0.59-fold [OR (95% CI): 0.39-0.91], 0.57-fold [OR (95% CI): 0.34-0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non-obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.


The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway.

  • Xiangchang Zeng‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine's scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.


Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls.

  • Qing Gao‎ et al.
  • PloS one‎
  • 2014‎

Transition protein 2 (TNP2) participates in removing nucleohistones and the initial condensation of spermatid nucleus during spermiogenesis. This study investigated the relationship between the variants of the bovine TNP2 gene and the semen quality traits of Chinese Holstein bulls. We detected three single nucleotide polymorphisms (SNPs) of the TNP2 gene in 392 Chinese Holstein bulls, namely, g.269 G>A (exon 1), g.480 C>T (intron 1), and g.1536 C>T (3'-UTR). Association analysis showed that the semen quality traits of the Chinese Holstein bulls was significantly affected by the three SNPs. The bulls with the haplotypic combinations H6H4, H6H6, and H6H8 had higher initial semen motility than those with the H7H8 and H8H4 haplotypic combinations (P<0.05). SNPs in the microRNA (miRNA) binding region of the TNP2 gene 3'-UTR may have contributed to the phenotypic differences. The phenotypic differences are caused by the altered expression of the miRNAs and their targets. Bioinformatics analysis predicted that the g.1536 C>T site in the TNP2 3'-UTR is located in the bta-miR-154 binding region. The quantitative real-time polymerase chain reaction results showed that the TNP2 mRNA relative expression in bulls with the CT and CC genotypes was significantly higher than those with the TT genotype (P<0.05) in the g.1536 C>T site. The luciferase assay also indicated that bta-miR-154 directly targets TNP2 in a murine Leydig cell tumor cell line. The SNP g.1536 C>T in the TNP2 3'-UTR, which altered the binding of TNP2 with bta-miR-154, was found to be associated with the semen quality traits of Chinese Holstein bulls.


Serum peptidome profiling for the diagnosis of colorectal cancer: discovery and validation in two independent cohorts.

  • Hao Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Except for the existing fecal occult blood test, colonoscopy and sigmoidoscopy, no widely accepted in vitro diagnostic methods have been available. To identify potential peptide biomarkers for CRC, serum samples from a discovery cohort (100 CRC patients and 100 healthy controls) and an independent validation cohort (91 CRC patients and 91 healthy controls) were collected. Peptides were fractionated by weak cation exchange magnetic beads (MB-WCX) and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Five peptides (peaks at m/z 1895.3, 2020.9, 2080.7, 2656.8 and 3238.5) were identified as candidate biomarkers for CRC. A diagnostic panel based on the five peptides can discriminate CRC patients from healthy controls, with an accuracy of 91.8%, sensitivity of 95.6%, and specificity of 87.9% in the validation cohort. Peptide peaks at m/z 1895.3, 2020.9 and 3238.5 were identified as the partial sequences of complement component 4 (C4), complement component 3 (C3) and fibrinogen α chain (FGA), respectively. This study potentiated peptidomic analysis as a promising in vitro diagnostic tool for diagnosis of CRC. The identified peptides suggest the involvement of the C3, C4 and FGA in CRC pathogenesis.


The Indirect Efficacy Comparison of DNA Methylation in Sputum for Early Screening and Auxiliary Detection of Lung Cancer: A Meta-Analysis.

  • Di Liu‎ et al.
  • International journal of environmental research and public health‎
  • 2017‎

DNA methylation in sputum has been an attractive candidate biomarker for the non-invasive screening and detection of lung cancer.


Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development.

  • Meelad M Dawlaty‎ et al.
  • Cell stem cell‎
  • 2011‎

The Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development, we have generated Tet1 mutant mESCs and mice. Tet1(-/-) ESCs have reduced levels of 5hmC and subtle changes in global gene expression, and are pluripotent and support development of live-born mice in tetraploid complementation assay, but display skewed differentiation toward trophectoderm in vitro. Tet1 mutant mice are viable, fertile, and grossly normal, though some mutant mice have a slightly smaller body size at birth. Our data suggest that Tet1 loss leading to a partial reduction in 5hmC levels does not affect pluripotency in ESCs and is compatible with embryonic and postnatal development.


Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality.

  • Qing Gao‎ et al.
  • NeuroImage‎
  • 2011‎

The effective connectivity networks among overlapped core regions recruited by motor execution (ME) and motor imagery (MI) were explored by means of conditional Granger causality and graph-theoretic method, based on functional magnetic resonance imaging (fMRI) data. Our results demonstrated more circuits of effective connectivity among the selected seed regions during right-hand performance than during left-hand performance, implying the influences of brain asymmetry of right-handedness on effective connectivity networks. The increased causal connections were found during ME than during MI, suggesting that the ME network may have some additional connections compared to MI networks to execute the overt physical movement. Furthermore, the In-Out degrees of information flow suggested left dorsal premotor cortex (PMd), inferior parietal lobule (IPL) and superior parietal lobule (SPL) as causal sources in ME/MI tasks, highlighting the dominant function of left PMd, IPL and SPL. These findings depicted the causal connectivity of motor related core regions in fronto-parietal circuit and might indicate the conversion of causal networks between ME and MI.


Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells.

  • Baole Zhang‎ et al.
  • Clinical epigenetics‎
  • 2020‎

Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM.


ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia.

  • Zuoguan Chen‎ et al.
  • Bioactive materials‎
  • 2021‎

The successful treatment of limb ischemia requires that promote angiogenesis along with microenvironment improvement. Zinc ions have been reported to stimulate angiogenesis, but application was limited to the toxicity concerns. We hypothesized that zinc based metal-EGCG capsule (EGCG/Zn Ps) can achieve sustained release Zn2+ resulting in reduced toxicity and improve angiogenesis as well as the improvement of microenvironment by ROS scavenging of EGCG. The surface morphology, zeta potential, infrared absorbance peaks and zinc ion release profile of the EGCG/Zn Ps were measured. In vitro, EGCG/Zn showed significantly antioxidant, anti-inflammatory and induced cell migration effect. In addition, EGCG/Zn Ps enabled the sustained release of zinc ions, which reduced cytotoxicity and enhanced the secretion of vascular endothelial growth factor (VEGF) in vitro and in vivo. In mouse models of limb ischemia, EGCG/Zn Ps promoted angiogenesis and cell proliferation in ischemic tissues. Moreover, EGCG/Zn Ps group exhibited the most significant recovery of limb ischemic score, limb temperature and blood flow than other groups. In conclusion, EGCG/Zn Ps is a safe and promising approach to combine the merit of Zn2+ and EGCG, thus enabling the direct application to limb ischemia.


Elective neck dissection versus wait-and-see policy in cT1N0 buccal squamous cell carcinoma.

  • Qigen Fang‎ et al.
  • BMC cancer‎
  • 2020‎

Our goal was to clarify the comparison between elective neck dissection (END) and the wait-and-see policy in neck management for cT1N0 buccal squamous cell carcinoma (SCC).


The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity.

  • Stephanie Chrysanthou‎ et al.
  • Nucleic acids research‎
  • 2022‎

Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.


The chloroplast genome of Ostericum citriodorum (Apiaceae), an endemic medicinal plant to China.

  • Chenyang Liao‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2020‎

Ostericum citriodorum is a traditional Chinese medicinal herb endemic to Southeast and South China, but now is becoming very rare because of rapid habit loss. The complete chloroplast genome of O. citriodorum was sequenced herein and suggested that the complete chloroplast genome was 155,919 bp in length, comprising the large single-copy (LSC) region of 85,393 bp, the small single-copy (SSC) region of 19,760 bp, and a pair of inverted regions (IRs) of 25,383 bp. Totally 127 genes were distributed in the whole genome, including 4 rRNAs, 37 tRNAs, and 81 protein coding genes. The G + C content of this chloroplast genome was 38%. Phylogenetic inference revealed that O. citriodorum was accompanied with Pterygopleurum neurophyllum and sister to O. palustre, indicating a close relationship between Ostericum and Pterygopleurum.


In Vivo Optofluidic Switch for Controlling Blood Microflow.

  • Xiaoshuai Liu‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

Control of blood microflow is crucial for the prevention and therapy of blood disorders, such as cardiovascular diseases and their complications. Conventional control strategies generally implant exogenous synthetic materials into blood vessels as labeling markers or actuating sources, which are invasive and incompatible with biological systems. Here, a label-free, noninvasive, and biocompatible device constructed from natural red blood cells (RBCs) for controlling blood microflow in vivo is reported. The RBCs, optically manipulated, arranged, and rotated using scanning optical tweezers, can function as an optofluidic switch for targeted switching, directional enrichment, dynamic redirecting, and rotary actuation of blood microflow inside zebrafish. The regulation precision of the switch is determined to be at the single-cell level, and the response time is measured as ≈200 ms using a streamline tracking method. This in vivo optofluidic switch may provide a biofriendly device for exploring blood microenvironments in a noncontact and noninvasive manner.


Photocurable Hydrogel Substrate-Better Potential Substitute on Bone-Marrow-Derived Dendritic Cells Culturing.

  • Jiewen Deng‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2022‎

Dendritic cells (DCs) are recognized as the most effective antigen-presenting cells at present. DCs have corresponding therapeutic effects in tumor immunity, transplantation immunity, infection inflammation and cardiovascular diseases, and the activation of T cells is dependent on DCs. However, normal bone-marrow-derived Dendritic cells (BMDCs) cultured on conventional culture plates are easy to be activated during culturing, and it is difficult to imitate the internal immune function. Here, we reported a novel BMDCs culturing with hydrogel substrate (CCHS), where we synthesized low substituted Gelatin Methacrylate-30 (GelMA-30) hydrogels and used them as a substitute for conventional culture plates in the culture and induction of BMDCs in vitro. The results showed that 5% GelMA-30 substrate was the best culture condition for BMDCs culturing. The low level of costimulatory molecules and the level of development-related transcription factors of BMDCs by CCHS were closer to that of spleen DCs and were capable of better promoting T cell activation and exerting an immune effect. CCHS was helpful to study the transformation of DCs from initial state to activated state, which contributes to the development of DC-T cell immunotherapy.


Neural efficiency and proficiency adaptation of effective connectivity corresponding to early and advanced skill levels in athletes of racket sports.

  • Qing Gao‎ et al.
  • Human brain mapping‎
  • 2023‎

This study explored how the neural efficiency and proficiency worked in athletes with different skill levels from the perspective of effective connectivity brain network in resting state. The deconvolved conditioned Granger causality (GC) analysis was applied to functional magnetic resonance imaging (fMRI) data of 35 elite athletes (EAs) and 42 student-athletes (SAs) of racket sports as well as 39 normal controls (NCs), to obtain the voxel-wised hemodynamic response function (HRF) parameters representing the functional segregation and effective connectivity representing the functional integration. The results showed decreased time-to-peak of HRF in the visual attention brain regions in the two athlete groups compared with NC and decreased response height in the advanced motor control brain regions in EA comparing to the nonelite groups, suggesting the neural efficiency represented by the regional HRF was different in early and advanced skill levels. GC analysis demonstrated that the GC values within the middle occipital gyrus had a linear trend from negative to positive, suggesting a stepwise "neural proficiency" of the effective connectivity from NC to SA then to EA. The GC values of the inter-lobe circuits in EA had the trend to regress to NC levels, in agreement with the neural efficiency of these circuits in EA. Further feature selection approach suggested the important role of the cerebral-brainstem GC circuit for discriminating EA. Our findings gave new insight into the complementary neural mechanisms in brain functional segregation and integration, which was associated with early and advanced skill levels in athletes of racket sports.


Evaluation of efficacy and safety of chemotherapy in the treatment of recurrent or resistant gestational trophoblastic neoplasia: A protocol for systematic review and meta-analysis.

  • Fang Luo‎ et al.
  • Medicine‎
  • 2021‎

Gestational Trophoblastic Neoplasia (GTN) is a spectrum of pregnancy-associated tumours emerging from placental tissue. Generally, GTN patients are considered to have a high rate of recovery. However, almost 25 per cent of GTN tumours resist, or have a high probability of relapsing following the first line of chemo treatment. Thus, tumours that resist or relapse requires salvage chemotherapy, sometimes accompanied by surgery. Globally, clinicians utilize a range of salvage regimens. Currently, ongoing debates are centred around choosing the best regimens in terms of safety and efficacy. Therefore, the current research aims to appraise the success and level of safeness using chemotherapy to treat patients with resistant or recurrent GTN.


Cystatin C is glucocorticoid responsive, directs recruitment of Trem2+ macrophages, and predicts failure of cancer immunotherapy.

  • Sam O Kleeman‎ et al.
  • Cell genomics‎
  • 2023‎

Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.


The combined effect of pit and fissure sealant application and oral health education on oral health status of children aged 6-9 years: a 12-month follow-up study in Northeast China.

  • Liwen Chen‎ et al.
  • BMC oral health‎
  • 2023‎

Children aged 6-9 years are vulnerable to dental caries due to age-related limitations and a lack of adequate knowledge regarding oral health and hygiene practices. This study aimed to establish a cohort of children aged between 6 and 9 years and conducted a 12-month follow-up to examine the combined effect of pit and fissure sealant (PFS) application and oral health education on their oral health status.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: