Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice.

  • Pradyut K Paul‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Skeletal muscle wasting is a major human morbidity, and contributes to mortality in a variety of clinical settings, including denervation and cancer cachexia. In this study, we demonstrate that the expression level and autoubiquitination of tumor necrosis factor (α) receptor adaptor protein 6 (TRAF6), a protein involved in receptor-mediated activation of several signaling pathways, is enhanced in skeletal muscle during atrophy. Skeletal muscle-restricted depletion of TRAF6 rescues myofibril degradation and preserves muscle fiber size and strength upon denervation. TRAF6 mediates the activation of JNK1/2, p38 mitogen-activated protein kinase, adenosine monophosphate-activated protein kinase, and nuclear factor κB, and induces the expression of muscle-specific E3 ubiquitin ligases and autophagy-related molecules in skeletal muscle upon denervation. Inhibition of TRAF6 also preserves the orderly pattern of intermyofibrillar and subsarcolemmal mitochondria in denervated muscle. Moreover, depletion of TRAF6 prevents cancer cachexia in an experimental mouse model. This study unveils a novel mechanism of skeletal muscle atrophy and suggests that TRAF6 is an important therapeutic target to prevent skeletal muscle wasting.


Kruppel-like factor 4 attenuates osteoblast formation, function, and cross talk with osteoclasts.

  • Jung Ha Kim‎ et al.
  • The Journal of cell biology‎
  • 2014‎

Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: