Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Identification of novel thymic epithelial cell subsets whose differentiation is regulated by RANKL and Traf6.

  • Nichole M Danzl‎ et al.
  • PloS one‎
  • 2014‎

Thymic epithelial cells (TECs) are critical for the normal development and function of the thymus. Here, we examined the developmental stages of TECs using quantitative assessment of the cortical and medullary markers Keratin 5 and Keratin 8 (K5 and K8) respectively, in normal and gain/loss of function mutant animals. Gain of function mice overexpressed RANKL in T cells, whereas loss of function animals lacked expression of Traf6 in TECs (Traf6ΔTEC). Assessment of K5 and K8 expression in conjunction with other TEC markers in wild type mice identified novel cortical and medullary TEC populations, expressing different combinations of these markers. RANKL overexpression led to expansion of all medullary TECs (mTECs) and enlargement of the thymic medulla. This in turn associated with a block in thymocyte development and loss of CD4+ CD8+, CD4+ and CD8+ thymocytes. In contrast, Traf6 deletion inhibited the production of most TEC populations including cortical TECs (cTECs), defined by absence of UEA-1 binding and LY51 expression, but had no apparent effect on thymocyte development. These results reveal a large degree of heterogeneity within the TEC compartment and the existence of several populations exhibiting concomitant expression of cortical, medullary and epithelial markers and whose production is regulated by RANKL and Traf6.


EGR-2 is not required for in vivo CD4 T cell mediated immune responses.

  • Hilda E Ramón‎ et al.
  • PloS one‎
  • 2010‎

The zinc finger transcription factor EGR-2 has been shown to play an important role in the induction of T cell anergy and the regulation of peripheral T cell tolerance. In vitro, a prior study has show that T cells deficient in EGR-2 are hyperproliferative to IL-2 and produce elevated levels of the effector cytokine IFN-γ. EGR-2 deficient mice have increased levels of CD44(high) T cells in peripheral lymphoid organs, and with age, develop autoimmune-like features.


TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and -independent humoral immune responses.

  • Takashi Kobayashi‎ et al.
  • PloS one‎
  • 2009‎

TNF receptor superfamily members, such as CD40 and the Toll-like receptors (TLRs), regulate many aspects of B cell differentiation and activation. TRAF6 is an intracellular signaling adaptor molecule for these receptors, but its role in B cells has not been clarified by previous genetic approaches, as the systemic deletion of the TRAF6 gene results in perinatal lethality. Here we show that B cell-specific TRAF6 deficiency results in a reduced number of mature B cells in the bone marrow and spleen. Optimal T cell-dependent (TD) antigen responses, as characterized by isotype switching and long-lived plasma cell generation, are also impaired in B cell-specific TRAF6-deficient mice. B cell-specific TRAF6-deficient mice also exhibit lower levels of serum IgM and IgG2b and defective antigen-specific IgM production in response to T cell-independent (TI) antigens. Unexpectedly, TRAF6-deficient B cell progenitors are unable to generate CD5(+) B-1 cells. These results reveal critical roles for TRAF6 in TD and TI humoral immune responses and in inductive fate decisions necessary to generate the B-1 B cell compartment.


TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL.

  • Matthew C Walsh‎ et al.
  • PloS one‎
  • 2008‎

The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFkappaB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFkappaB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFkappaB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKgamma/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFkappaB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function.


Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses.

  • Jang Eun Lee‎ et al.
  • PloS one‎
  • 2015‎

Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2) regulates fatty acid oxidation (FAO) by inhibiting carnitine palmitoyltransferase 1 (CPT1), a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.


Microbiota-Independent Ameliorative Effects of Antibiotics on Spontaneous Th2-Associated Pathology of the Small Intestine.

  • Daehee Han‎ et al.
  • PloS one‎
  • 2015‎

We have previously generated a mouse model of spontaneous Th2-associated disease of the small intestine called TRAF6ΔDC, in which dendritic cell (DC)-intrinsic expression of the signaling mediator TRAF6 is ablated. Interestingly, broad-spectrum antibiotic treatment ameliorates TRAF6ΔDC disease, implying a role for commensal microbiota in disease development. However, the relationship between the drug effects and commensal microbiota status remains to be formally demonstrated. To directly assess this relationship, we have now generated TRAF6ΔDC bone marrow chimera mice under germ-free (GF) conditions lacking commensal microbiota, and found, unexpectedly, that Th2-associated disease is actually exacerbated in GF TRAF6ΔDC mice compared to specific pathogen-free (SPF) TRAF6ΔDC mice. At the same time, broad-spectrum antibiotic treatment of GF TRAF6ΔDC mice has an ameliorative effect similar to that observed in antibiotics-treated SPF TRAF6ΔDC mice, implying a commensal microbiota-independent effect of broad-spectrum antibiotic treatment. We further found that treatment of GF TRAF6ΔDC mice with broad-spectrum antibiotics increases Foxp3+ Treg populations in lymphoid organs and the small intestine, pointing to a possible mechanism by which treatment may directly exert an immunomodulatory effect. To investigate links between the exacerbated phenotype of the small intestines of GF TRAF6ΔDC mice and local microbiota, we performed microbiotic profiling of the luminal contents specifically within the small intestines of diseased TRAF6ΔDC mice, and, when compared to co-housed control mice, found significantly increased total bacterial content characterized by specific increases in Firmicutes Lactobacillus species. These data suggest a protective effect of Firmicutes Lactobacillus against the spontaneous Th2-related inflammation of the small intestine of the TRAF6ΔDC model, and may represent a potential mechanism for related disease phenotypes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: