Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Allelic specificity of Ube3a expression in the mouse brain during postnatal development.

  • Matthew C Judson‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS.


Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

  • Matthew C Judson‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior.


Molecular and behavioral consequences of Ube3a gene overdosage in mice.

  • A Mattijs Punt‎ et al.
  • JCI insight‎
  • 2022‎

Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder. Chromosomal multiplication of the UBE3A gene is presumed to be the primary driver of Dup15q pathophysiology, given that UBE3A exhibits maternal monoallelic expression in neurons and that maternal duplications typically yield far more severe neurodevelopmental outcomes than paternal duplications. However, studies into the pathogenic effects of UBE3A overexpression in mice have yielded conflicting results. Here, we investigated the neurodevelopmental impact of Ube3a gene overdosage using bacterial artificial chromosome-based transgenic mouse models (Ube3aOE) that recapitulate the increases in Ube3a copy number most often observed in Dup15q. In contrast to previously published Ube3a overexpression models, Ube3aOE mice were indistinguishable from wild-type controls on a number of molecular and behavioral measures, despite suffering increased mortality when challenged with seizures, a phenotype reminiscent of sudden unexpected death in epilepsy. Collectively, our data support a model wherein pathogenic synergy between UBE3A and other overexpressed 15q11.2-q13.1 genes is required for full penetrance of Dup15q syndrome phenotypes.


Subcellular organization of UBE3A in neurons.

  • Alain C Burette‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Ubiquitination regulates a broad array of cellular processes, and defective ubiquitination is implicated in several neurological disorders. Loss of the E3 ubiquitin-protein ligase UBE3A causes Angelman syndrome. Despite its clinical importance, the normal role of UBE3A in neurons is still unclear. As a step toward deciphering its possible functions, we performed high-resolution light and electron microscopic immunocytochemistry. We report a broad distribution of UBE3A in neurons, highlighted by concentrations in axon terminals and euchromatin-rich nuclear domains. Our findings suggest that UBE3A may act locally to regulate individual synapses while also mediating global, neuronwide influences through the regulation of gene transcription. J. Comp. Neurol. 525:233-251, 2017. © 2016 Wiley Periodicals, Inc.


Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice.

  • Matthew C Judson‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.


Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the met-signaling-deficient mouse forebrain.

  • Matthew C Judson‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Human genetic findings and murine neuroanatomical expression mapping have intersected to implicate Met receptor tyrosine kinase signaling in the development of forebrain circuits controlling social and emotional behaviors that are atypical in autism-spectrum disorders (ASD). To clarify roles for Met signaling during forebrain circuit development in vivo, we generated mutant mice (Emx1(Cre)/Met(fx/fx)) with an Emx1-Cre-driven deletion of signaling-competent Met in dorsal pallially derived forebrain neurons. Morphometric analyses of Lucifer yellow-injected pyramidal neurons in postnatal day 40 anterior cingulate cortex (ACC) revealed no statistically significant changes in total dendritic length but a selective reduction in apical arbor length distal to the soma in Emx1(Cre)/Met(fx/fx) neurons relative to wild type, consistent with a decrease in the total tissue volume sampled by individual arbors in the cortex. The effects on dendritic structure appear to be circuit-selective, insofar as basal arbor length was increased in Emx1(Cre)/Met(fx/fx) layer 2/3 neurons. Spine number was not altered on the Emx1(Cre)/Met(fx/fx) pyramidal cell populations studied, but spine head volume was significantly increased (∼20%). Cell-nonautonomous, circuit-level influences of Met signaling on dendritic development were confirmed by studies of medium spiny neurons (MSN), which do not express Met but receive Met-expressing corticostriatal afferents during development. Emx1(Cre)/Met(fx/fx) MSN exhibited robust increases in total arbor length (∼20%). As in the neocortex, average spine head volume was also increased (∼12%). These data demonstrate that a developmental loss of presynaptic Met receptor signaling can affect postsynaptic morphogenesis and suggest a mechanism whereby attenuated Met signaling could disrupt both local and long-range connectivity within circuits relevant to ASD.


Subcellular organization of UBE3A in human cerebral cortex.

  • Alain C Burette‎ et al.
  • Molecular autism‎
  • 2018‎

Loss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A's localization is integral to its function.


GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

  • Matthew C Judson‎ et al.
  • Neuron‎
  • 2016‎

Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS.


Delayed loss of UBE3A reduces the expression of Angelman syndrome-associated phenotypes.

  • Monica Sonzogni‎ et al.
  • Molecular autism‎
  • 2019‎

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutations affecting UBE3A gene expression. Previous studies in mice revealed distinct critical periods during neurodevelopment in which reactivation of Ube3a gene expression can prevent the onset of behavioral deficits. Whether UBE3A is required for brain function throughout life is unknown. Here, we address the importance of maintaining UBE3A expression after normal brain development.


Conserved subcortical and divergent cortical expression of proteins encoded by orthologs of the autism risk gene MET.

  • Matthew C Judson‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2011‎

Met receptor tyrosine kinase signaling regulates the growth and development of axons and may contribute to the wiring of cortical and limbic circuits in the rodent forebrain. Whether the orthologous MET receptor functions similarly in the developing primate forebrain is not known but is of considerable interest considering the association of variant MET alleles with social and communication phenotypes in autism. To begin addressing this question, we compared Met/MET protein expression in the developing mouse and rhesus macaque forebrain. There was a strong temporal conservation of expression during the time of rapid axon development and the onset of robust synapse formation. Expression patterns of Met/MET in limbic-related structures were almost identical between species. In marked contrast, there was highly divergent expression in the neocortex. In mouse, Met was broadly distributed throughout neocortex. In the macaque, robust MET expression was largely restricted to the posterior cingulate, inferior temporal, posterior parietal, and visual cortices, including face processing regions. The pattern is consistent with the importance of vision in the social repertoire of the primate. Collectively, these data suggest a conserved developmental function of the MET receptor in wiring together limbic and neocortical circuits that facilitate species-appropriate responses, including social behavior.


A new synaptic player leading to autism risk: Met receptor tyrosine kinase.

  • Matthew C Judson‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2011‎

The validity for assigning disorder risk to an autism spectrum disorder (ASD) candidate gene comes from convergent genetic, clinical, and developmental neurobiology data. Here, we review these lines of evidence from multiple human genetic studies, and non-human primate and mouse experiments that support the conclusion that the MET receptor tyrosine kinase (RTK) functions to influence synapse development in circuits relevant to certain core behavioral domains of ASD. There is association of both common functional alleles and rare copy number variants that impact levels of MET expression in the human cortex. The timing of Met expression is linked to axon terminal outgrowth and synaptogenesis in the developing rodent and primate forebrain, and both in vitro and in vivo studies implicate this RTK in dendritic branching, spine maturation, and excitatory connectivity in the neocortex. This impact can occur in a cell-nonautonomous fashion, emphasizing the unique role that Met plays in specific circuits relevant to ASD.


Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation.

  • Janet Berrios‎ et al.
  • Nature communications‎
  • 2016‎

Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation.


Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice.

  • Matthew C Judson‎ et al.
  • JCI insight‎
  • 2021‎

Loss of the maternal UBE3A allele causes Angelman syndrome (AS), a debilitating neurodevelopmental disorder. Here, we devised an AS treatment strategy based on reinstating dual-isoform expression of human UBE3A (hUBE3A) in the developing brain. Kozak sequence engineering of our codon-optimized vector (hUBE3Aopt) enabled translation of both short and long hUBE3A protein isoforms at a near-endogenous 3:1 (short/long) ratio, a feature that could help to support optimal therapeutic outcomes. To model widespread brain delivery and early postnatal onset of hUBE3A expression, we packaged the hUBE3Aopt vector into PHP.B capsids and performed intracerebroventricular injections in neonates. This treatment significantly improved motor learning and innate behaviors in AS mice, and it rendered them resilient to epileptogenesis and associated hippocampal neuropathologies induced by seizure kindling. hUBE3A overexpression occurred frequently in the hippocampus but was uncommon in the neocortex and other major brain structures; furthermore, it did not correlate with behavioral performance. Our results demonstrate the feasibility, tolerability, and therapeutic potential for dual-isoform hUBE3A gene transfer in the treatment of AS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: