Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1.

  • Nicolás G Simonet‎ et al.
  • Science advances‎
  • 2020‎

Sirtuins are key players of metabolic stress response. Originally described as deacetylases, some sirtuins also exhibit poorly understood mono-adenosine 5'-diphosphate (ADP)-ribosyltransferase (mADPRT) activity. We report that the deacetylase SirT7 is a dual sirtuin, as it also features auto-mADPRT activity. SirT7 mADPRT occurs at a previously undefined active site, and its abrogation alters SirT7 chromatin distribution. We identify an epigenetic pathway by which ADP-ribosyl-SirT7 is recognized by the ADP-ribose reader mH2A1.1 under glucose starvation, inducing SirT7 relocalization to intergenic regions. SirT7 promotes mH2A1 enrichment in a subset of nearby genes, many of them involved in second messenger signaling, resulting in their specific up- or down-regulation. The expression profile of these genes under calorie restriction is consistently abrogated in SirT7-deficient mice, resulting in impaired activation of autophagy. Our work provides a novel perspective on sirtuin duality and suggests a role for SirT7/mH2A1.1 axis in glucose homeostasis and aging.


SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice.

  • Tatsuya Yoshizawa‎ et al.
  • Nature communications‎
  • 2022‎

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.


SIRT7 Deficiency Protects against Aβ42-Induced Apoptosis through the Regulation of NOX4-Derived Reactive Oxygen Species Production in SH-SY5Y Cells.

  • Hironori Mizutani‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Alzheimer's disease (AD) is an age-related neurodegenerative disease that is characterized by irreversible memory loss and cognitive decline. The deposition of amyloid-β (Aβ), especially aggregation-prone Aβ42, is considered to be an early event preceding neurodegeneration in AD. Sirtuins (SIRT1-7 in mammals) are nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases, and several sirtuins play important roles in AD. However, the involvement of SIRT7 in AD pathogenesis is not known. Here, we demonstrate that SIRT7 mRNA expression is increased in the cortex, entorhinal cortex, and prefrontal cortex of AD patients. We also found that Aβ42 treatment rapidly increased NADPH oxidase 4 (NOX4) expression at the post-transcriptional level, and induced reactive oxygen species (ROS) production and apoptosis in neuronal SH-SY5Y cells. In contrast, SIRT7 knockdown inhibited Aβ42-induced ROS production and apoptosis by suppressing the upregulation of NOX4. Collectively, these findings suggest that the inhibition of SIRT7 may play a beneficial role in AD pathogenesis through the regulation of ROS production.


SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway.

  • Irene Santos-Barriopedro‎ et al.
  • Nature communications‎
  • 2018‎

Sirtuins are NAD+-dependent deacetylases that facilitate cellular stress response. They include SirT6, which protects genome stability and regulates metabolic homeostasis through gene silencing, and whose loss induces an accelerated aging phenotype directly linked to hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved cysteines in the PRE-SET domain of Suv39h1. Following activation of NF-κB signaling Suv39h1 is released from the IκBα locus, subsequently repressing the NF-κB pathway. We propose that SirT6 attenuates the NF-κB pathway through IκBα upregulation via cysteine monoubiquitination and chromatin eviction of Suv39h1. We suggest a mechanism based on SirT6-mediated enhancement of a negative feedback loop that restricts the NF-κB pathway.


SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix.

  • Masatoshi Fukuda‎ et al.
  • Nature communications‎
  • 2018‎

SP7/Osterix (OSX) is a master regulatory transcription factor that activates a variety of genes during differentiation of osteoblasts. However, the influence of post-translational modifications on the regulation of its transactivation activity is largely unknown. Here, we report that sirtuins, which are NAD(+)-dependent deacylases, regulate lysine deacylation-mediated transactivation of OSX. Germline Sirt7 knockout mice develop severe osteopenia characterized by decreased bone formation and an increase of osteoclasts. Similarly, osteoblast-specific Sirt7 knockout mice showed attenuated bone formation. Interaction of SIRT7 with OSX leads to the activation of transactivation by OSX without altering its protein expression. Deacylation of lysine (K) 368 in the C-terminal region of OSX by SIRT7 promote its N-terminal transactivation activity. In addition, SIRT7-mediated deacylation of K368 also facilitates depropionylation of OSX by SIRT1, thereby increasing OSX transactivation activity. In conclusion, our findings suggest that SIRT7 has a critical role in bone formation by regulating acylation of OSX.


Sirt7 inhibits Sirt1-mediated activation of Suv39h1.

  • Poonam Kumari‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2018‎

Sirtuins regulate a variety of cellular processes through protein deacetylation. The best-known member of mammalian sirtuin family, Sirt1, plays important roles in the maintenance of cellular homeostasis by regulating cell metabolism, differentiation and stress responses, among others. Sirt1 activity requires tight regulation to meet specific cellular requirements, which is achieved at different levels and by specific mechanisms. Recently, a regulatory loop between Sirt1 and another sirtuin, Sirt7, was identified. Sirt7 inhibits Sirt1 autodeacetylation at K230 and activation thereby preventing Sirt1-mediated repression of adipocyte differentiation by inhibition of the PPARγ gene. Here, we extend the regulatory complexity of Sirt7-dependent restriction of Sirt1 activity by demonstrating that Sirt7 reduces activation of a previously described prominent Sirt1 target, the histone methyltransferase Suv39h1. We show that removal of the acetyl-group at K230 in Sirt1 due to the absence of Sirt7 leads to hyperactivation of Sirt1 and thereby to constantly increased activity of Suv39h1.


SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway.

  • Tatsuya Yoshizawa‎ et al.
  • Cell metabolism‎
  • 2014‎

Sirtuins (SIRT1-7) have attracted considerable attention as regulators of metabolism over the past decade. However, the physiological functions and molecular mechanisms of SIRT7 are poorly understood. Here we demonstrate that Sirt7 knockout mice were resistant to high-fat diet-induced fatty liver, obesity, and glucose intolerance, and that hepatic triglyceride accumulation was also attenuated in liver-specific Sirt7 knockout mice. Hepatic SIRT7 positively regulated the protein level of TR4/TAK1, a nuclear receptor involved in lipid metabolism, and as a consequence activated TR4 target genes to increase fatty acid uptake and triglyceride synthesis/storage. Biochemical studies revealed that the DDB1-CUL4-associated factor 1 (DCAF1)/damage-specific DNA binding protein 1 (DDB1)/cullin 4B (CUL4B) E3 ubiquitin ligase complex interacted with TR4, leading to its degradation, while binding of SIRT7 to the DCAF1/DDB1/CUL4B complex inhibited the degradation of TR4. In conclusion, we propose that hepatic SIRT7 controls lipid metabolism in liver by regulating the ubiquitin-proteasome pathway.


Inactivation of Sirt6 ameliorates muscular dystrophy in mdx mice by releasing suppression of utrophin expression.

  • Angelina M Georgieva‎ et al.
  • Nature communications‎
  • 2022‎

The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD).


SIRT7 Deficiency Protects against Aging-Associated Glucose Intolerance and Extends Lifespan in Male Mice.

  • Tomoya Mizumoto‎ et al.
  • Cells‎
  • 2022‎

Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.


An Insight into Giant Cell Arteritis Pathogenesis: Evidence for Oxidative Stress and SIRT1 Downregulation.

  • Alessandro Ianni‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Giant cell arteritis (GCA), medium and large vessel granulomatous vasculitis affecting the elderly, is characterized by a multitude of vascular complications, including venous thrombosis, myocardial infraction and stroke. The formation of granulomatous infiltrates and the enhanced accumulation of proinflammatory cytokines are typical features of this condition. The GCA pathogenesis remains largely unknown, but recent studies have suggested the involvement of oxidative stress, mainly sustained by an enhanced reactive oxygen species (ROS) production by immature neutrophils. On this basis, in the present study, we intended to evaluate, in GCA patients, the presence of systemic oxidative stress and possible alterations in the expression level of nuclear sirtuins, enzymes involved in the inhibition of inflammation and oxidative stress. Thirty GCA patients were included in the study and compared to 30 healthy controls in terms of leukocyte ROS production, oxidative stress and SIRT1 expression. Our results clearly indicated a significant increase (p < 0.05) both in the ROS levels in the leukocyte fractions and plasma oxidative stress markers (lipid peroxidation and total antioxidant capacity) in the GCA patients compared to the healthy controls. In PBMCs from the GCA patients, a significant decrease in SIRT1 expression (p < 0.05) but not in SIRT6 and SIRT7 expression was found. Taken together, our preliminary findings indicate that, in GCA patients, plasma oxidative stress is paralleled by a reduced SIRT1 expression in PBMC. Further studies are needed to highlight if and how these alterations contribute to GCA pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: