Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

The Expression of Functional Vpx during Pathogenic SIVmac Infections of Rhesus Macaques Suppresses SAMHD1 in CD4+ Memory T Cells.

  • Masashi Shingai‎ et al.
  • PLoS pathogens‎
  • 2015‎

For nearly 20 years, the principal biological function of the HIV-2/SIV Vpx gene has been thought to be required for optimal virus replication in myeloid cells. Mechanistically, this Vpx activity was recently reported to involve the degradation of Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) in this cell lineage. Here we show that when macaques were inoculated with either the T cell tropic SIVmac239 or the macrophage tropic SIVmac316 carrying a Vpx point mutation that abrogates the recruitment of DCAF1 and the ensuing degradation of endogenous SAMHD1 in cultured CD4+ T cells, virus acquisition, progeny virion production in memory CD4+ T cells during acute infection, and the maintenance of set-point viremia were greatly attenuated. Revertant viruses emerging in two animals exhibited an augmented replication phenotype in memory CD4+ T lymphocytes both in vitro and in vivo, which was associated with reduced levels of endogenous SAMHD1. These results indicate that a critical role of Vpx in vivo is to promote the degradation of SAMHD1 in memory CD4+ T lymphocytes, thereby generating high levels of plasma viremia and the induction of immunodeficiency.


Abnormal Blood Coagulation and Kidney Damage in Aged Hamsters Infected with Severe Acute Respiratory Syndrome Coronavirus 2.

  • Marumi Ohno‎ et al.
  • Viruses‎
  • 2021‎

Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.


Analysis of immunoglobulin transcripts and hypermutation following SHIV(AD8) infection and protein-plus-adjuvant immunization.

  • Joseph R Francica‎ et al.
  • Nature communications‎
  • 2015‎

Developing predictive animal models to assess how candidate vaccines and infection influence the ontogenies of Envelope (Env)-specific antibodies is critical for the development of an HIV vaccine. Here we use two nonhuman primate models to compare the roles of antigen persistence, diversity and innate immunity. We perform longitudinal analyses of HIV Env-specific B-cell receptor responses to SHIV(AD8) infection and Env protein vaccination with eight different adjuvants. A subset of the SHIV(AD8)-infected animals with higher viral loads and greater Env diversity show increased neutralization associated with increasing somatic hypermutation (SHM) levels over time. The use of adjuvants results in increased ELISA titres but does not affect the mean SHM levels or CDR H3 lengths. Our study shows how the ontogeny of Env-specific B cells can be tracked, and provides insights into the requirements for developing neutralizing antibodies that should facilitate translation to human vaccine studies.


Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants.

  • Florian Klein‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian-human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.


Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques.

  • Brendon Y Chua‎ et al.
  • PLoS pathogens‎
  • 2022‎

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Field-deployable multiplex detection method of SARS-CoV-2 and influenza virus using loop-mediated isothermal amplification and DNA chromatography.

  • Kyoko Hayashida‎ et al.
  • PloS one‎
  • 2023‎

A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.


Defining the kinetic effects of infection with influenza virus A/PR8/34 (H1N1) on sphingosine-1-phosphate signaling in mice by targeted LC/MS.

  • Divyavani Gowda‎ et al.
  • Scientific reports‎
  • 2021‎

Influenza remains a world-wide health concern, causing 290,000-600,000 deaths and up to 5 million cases of severe illnesses annually. Noticing the host factors that control biological responses, such as inflammatory cytokine secretion, to influenza virus infection is important for the development of novel drugs. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite and has essential biological functions in inflammation. However, the kinetic effects of influenza virus infection on physiological S1P levels and their signaling in multiple tissues remain unknown. In this study, we utilized a mouse model intranasally infected with 50 or 500 plaque forming units (PFU) of A/Puerto Rico/8/34 (H1N1; PR8) virus to investigate how S1P levels and expression of its regulating factors are affected by influenza virus infection by the liquid-chromatography/mass spectrometry and real-time PCR, respectively. The S1P level was significantly high in the plasma of mice infected with 500 PFU of the virus than that in control mice at 6 day-post-infection (dpi). Elevated gene expression of sphingosine kinase-1 (Sphk1), an S1P synthase, was observed in the liver, lung, white adipose tissue, heart, and aorta of infected mice. This could be responsible for the increased plasma S1P levels as well as the decrease in the hepatic S1P lyase (Sgpl1) gene in the infected mice. These results indicate modulation of S1P-signaling by influenza virus infection. Since S1P regulates inflammation and leukocyte migration, it must be worth trying to target this signaling to control influenza-associated symptoms.


A high-affinity aptamer with base-appended base-modified DNA bound to isolated authentic SARS-CoV-2 strains wild-type and B.1.617.2 (delta variant).

  • Hirotaka Minagawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Simple, highly sensitive detection technologies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for the effective implementation of public health policies. We used the systematic evolution of ligands by exponential enrichment with a modified DNA library, including a base-appended base (uracil with a guanine base at its fifth position), to create an aptamer with a high affinity for the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. The aptamer had a dissociation constant of 1.2 and < 1 nM for the RBD and spike trimer, respectively. Furthermore, enzyme-linked aptamer assays confirmed that the aptamer binds to isolated authentic SARS-CoV-2 wild-type and B.1.617.2 (delta variant). The binding signal was larger that of commercially available anti-SARS-CoV-2 RBD antibody. Thus, this aptamer as a sensing element will enable the highly sensitive detection of SARS-CoV-2.


Immunogenicity and protective efficacy of a co-formulated two-in-one inactivated whole virus particle COVID-19/influenza vaccine.

  • Chimuka Handabile‎ et al.
  • Scientific reports‎
  • 2024‎

Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.


Early antibody therapy can induce long-lasting immunity to SHIV.

  • Yoshiaki Nishimura‎ et al.
  • Nature‎
  • 2017‎

Highly potent and broadly neutralizing anti-HIV-1 antibodies (bNAbs) have been used to prevent and treat lentivirus infections in humanized mice, macaques, and humans. In immunotherapy experiments, administration of bNAbs to chronically infected animals transiently suppresses virus replication, which invariably returns to pre-treatment levels and results in progression to clinical disease. Here we show that early administration of bNAbs in a macaque simian/human immunodeficiency virus (SHIV) model is associated with very low levels of persistent viraemia, which leads to the establishment of T-cell immunity and resultant long-term infection control. Animals challenged with SHIVAD8-EO by mucosal or intravenous routes received a single 2-week course of two potent passively transferred bNAbs (3BNC117 and 10-1074 (refs 13, 14)). Viraemia remained undetectable for 56-177 days, depending on bNAb half-life in vivo. Moreover, in the 13 treated monkeys, plasma virus loads subsequently declined to undetectable levels in 6 controller macaques. Four additional animals maintained their counts of T cells carrying the CD4 antigen (CD4+) and very low levels of viraemia persisted for over 2 years. The frequency of cells carrying replication-competent virus was less than 1 per 106 circulating CD4+ T cells in the six controller macaques. Infusion of a T-cell-depleting anti-CD8β monoclonal antibody to the controller animals led to a specific decline in levels of CD8+ T cells and the rapid reappearance of plasma viraemia. In contrast, macaques treated for 15 weeks with combination anti-retroviral therapy, beginning on day 3 after infection, experienced sustained rebound plasma viraemia when treatment was interrupted. Our results show that passive immunotherapy during acute SHIV infection differs from combination anti-retroviral therapy in that it facilitates the emergence of potent CD8+ T-cell immunity able to durably suppress virus replication.


Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily.

  • Megumi Higuchi‎ et al.
  • Developmental and comparative immunology‎
  • 2008‎

Human Toll-like receptor 2 (TLR2) subfamily recognizes bacterial lipoproteins (BLP) and peptidoglycan (PGN). According to the genome information, chicken has structural orthologs of TLRs1 and 2, in addition to TLRs3, 4, 5 and 7. Chicken has two additional TLRs, TLR15 and TLR21, whose orthologs human lacks. The chicken (ch)TLR1 and 2 genes are individually duplicated to encode for four different proteins, chTLR1-1, 1-2, 2-1 and 2-2, of the TLR2 subfamily. Here we investigated the functional profile of these TLR2 subfamily proteins of chicken. By NF-kappaB reporter assay using HEK293 cells, we found that chTLR2-1 and chTLR1-2 cooperatively signal the presence of PGN. A combination of chTLR2-1 and chTLR1-2 also most efficiently recognized diacylated BLP, macrophage-activating lipopeptide 2kDa (Malp-2), while the combination of chTLR2-1 and chTLR1-1 failed to recognize Malp-2. All combinations, however, recognized triacylated BLP, Pam3. Consistent with these results, human TLR2-stimulating mycobacteria preparations, BCG-cell wall and cell lysate of Mycobacterium avium, induced activation of NF-kappaB in cells expressing chTLR2-1 and 1-2 and to lesser extents, cells with chTLR2-2 and either of chTLR1. Strikingly, expression of either of these alone did not activate the reporter for NF-kappaB. These chTLRs are likely to have the combination functional feature as in the human TLR2 subfamily. Confocal and immunoprecipitation analyses of human cell transfectants showed that they cluster on the cell surface by a physical molecular association, causing all of them to merge and coprecipitate. These results suggest that chTLR2 subfamily members discriminate between their ligands by combinational events.


Influenza virus infection affects insulin signaling, fatty acid-metabolizing enzyme expressions, and the tricarboxylic acid cycle in mice.

  • Marumi Ohno‎ et al.
  • Scientific reports‎
  • 2020‎

Although the severity of influenza virus infections has been associated with host energy metabolism, the related mechanisms have not yet been clarified. Here we examined the effects of influenza virus infection on host energy metabolism in mice. After infecting mice with intranasal applications of 500 plaque-forming units of A/Puerto Rico/8/34 (H1N1; PR8) virus, the serum levels of most intermediates in the tricarboxylic acid (TCA) cycle and related metabolic pathways were significantly reduced. These data suggest that substrate supply to the TCA cycle is reduced under these conditions, rather than specific metabolic reactions being inhibited. Then, we focused on glucose and fatty acid metabolism that supply substrates to the TCA cycle. Akt phosphorylation following insulin injections was attenuated in the livers of PR8 virus-infected mice. Furthermore, glucose tolerance tests revealed that the PR8 virus-infected mice showed higher blood glucose levels than the vehicle-inoculated control mice. These results suggest that influenza virus infection impairs insulin signaling, which regulates glucose uptake. However, increases in the hepatic expressions of fatty acid-metabolizing enzymes suggest that fatty acids accumulate in liver cells of infected mice. Collectively, our data indicate that influenza virus infection dysregulates host energy metabolism. This line of investigation provides novel insights into the pathogenesis of influenza.


Critical role of oxidized LDL receptor-1 in intravascular thrombosis in a severe influenza mouse model.

  • Marumi Ohno‎ et al.
  • Scientific reports‎
  • 2021‎

Although coagulation abnormalities, including microvascular thrombosis, are thought to contribute to tissue injury and single- or multiple-organ dysfunction in severe influenza, the detailed mechanisms have yet been clarified. This study evaluated influenza-associated abnormal blood coagulation utilizing a severe influenza mouse model. After infecting C57BL/6 male mice with intranasal applications of 500 plaque-forming units of influenza virus A/Puerto Rico/8/34 (H1N1; PR8), an elevated serum level of prothrombin fragment 1 + 2, an indicator for activated thrombin generation, was observed. Also, an increased gene expression of oxidized low-density lipoprotein (LDL) receptor-1 (Olr1), a key molecule in endothelial dysfunction in the progression of atherosclerosis, was detected in the aorta of infected mice. Body weight decrease, serum levels of cytokines and chemokines, viral load, and inflammation in the lungs of infected animals were similar between wild-type and Olr1 knockout (KO) mice. In contrast, the elevation of prothrombin fragment 1 + 2 levels in the sera and intravascular thrombosis in the lungs by PR8 virus infection were not induced in KO mice. Collectively, the results indicated that OLR1 is a critical host factor in intravascular thrombosis as a pathogeny of severe influenza. Thus, OLR1 is a promising novel therapeutic target for thrombosis during severe influenza.


Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques.

  • Masashi Shingai‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti-HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.


Leptospira Is an Environmental Bacterium That Grows in Waterlogged Soil.

  • Yasutake Yanagihara‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Leptospirosis is a zoonotic disease caused by infection with pathogenic leptospires. Consistent with recent studies by other groups, leptospires were isolated from 89 out of 110 (80.9%) soil or water samples from varied locations in the Philippines in our surveillance study, indicating that leptospires might have a life cycle that does not involve animal hosts. However, despite previous work, it has not been confirmed whether leptospires multiply in the soil environment under various experimental conditions. Given the fact that the case number of leptospirosis is increased after flood, we hypothesized that waterlogged soil, which mimics the postflooding environment, could be a suitable condition for growing leptospires. To verify this hypothesis, pathogenic and saprophytic leptospires were seeded in the bottles containing 2.5 times as much water as soil, and bacterial counts in the bottles were measured over time. Pathogenic and saprophytic leptospires were found to increase their number in waterlogged soil but not in water or soil alone. In addition, leptospires were reisolated from soil in closed tubes for as long as 379 days. These results indicate that leptospires are in a resting state in the soil and are able to proliferate with increased water content in the environment. This notion is strongly supported by observations that the case number of leptospirosis is significantly higher in rainy seasons and increased after flood. Therefore, we reached the following conclusion: environmental soil is a potential reservoir of leptospires. IMPORTANCE Since research on Leptospira has focused on pathogenic leptospires, which are supposed to multiply only in animal hosts, the life cycle of saprophytic leptospires has long been a mystery. This study demonstrates that both pathogenic and saprophytic leptospires multiply in the waterlogged soil, which mimics the postflooding environment. The present results potentially explain why leptospirosis frequently occurs after floods. Therefore, environmental soil is a potential reservoir of leptospires and leptospirosis is considered an environment-borne as well as a zoonotic disease. This is a significant report to reveal that leptospires multiply under environmental conditions, and this finding leads us to reconsider the ecology of leptospires.


Inactivated Whole Virus Particle Influenza Vaccine Induces Anti-Neuraminidase Antibodies That May Contribute to Cross-Protection against Heterologous Virus Infection.

  • Chimuka Handabile‎ et al.
  • Vaccines‎
  • 2022‎

Despite the use of vaccines, seasonal influenza remains a risk to public health. We previously proposed the inactivated whole virus particle vaccine (WPV) as an alternative to the widely used split vaccine (SV) for the control of seasonal and pandemic influenza based on the superior priming potency of WPV to that of SV. In this study, we further examined and compared the immunological potency of monovalent WPV and SV of A/California/7/2009 (X-179A) (H1N1) pdm09 (CA/09) to generate immune responses against heterologous viruses, A/Singapore/GP1908/2015 (IVR-180) (H1N1) pdm09 (SG/15), and A/duck/Hokkaido/Vac-3/2007 (H5N1) (DH/07) in mice. Following challenge with a lethal dose of heterologous SG/15, lower virus titer in the lungs and milder weight loss were observed in WPV-vaccinated mice than in SV-vaccinated ones. To investigate the factors responsible for the differences in the protective effect against SG/15, the sera of vaccinated mice were analyzed by hemagglutination-inhibition (HI) and neuraminidase-inhibition (NI) assays to evaluate the antibodies induced against viral hemagglutinin (HA) and neuraminidase (NA), respectively. While the two vaccines induced similar levels of HI antibodies against SG/15 after the second vaccination, only WPV-vaccinated mice induced significantly higher titers of NI antibodies against the strain. Furthermore, given the significant elevation of NI antibody titers against DH/07, an H5N1 avian influenza virus, WPV was also demonstrated to induce NA-inhibiting antibodies that recognize NA of divergent strains. This could be explained by the higher conservation of epitopes of NA among strains than for HA. Taking these findings together, NA-specific antibodies induced by WPV may have contributed to better protection from infection with heterologous influenza virus SG/15, compared with SV. The present results indicate that WPV is an effective vaccine for inducing antibodies against both HA and NA of heterologous viruses and may be a useful vaccine to conquer vaccine strain mismatch.


The elucidation of plasma lipidome profiles during severe influenza in a mouse model.

  • Marumi Ohno‎ et al.
  • Scientific reports‎
  • 2023‎

Although influenza virus infection has been shown to affect lipid metabolism, details remain unknown. Therefore, we elucidated the kinetic lipid profiles of mice infected with different doses of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) by measuring multiple lipid molecular species using untargeted lipidomic analysis. C57BL/6 male mice were intranasally infected with PR8 virus at 50 or 500 plaque-forming units to cause sublethal or lethal influenza, respectively. Plasma and tissue samples were collected at 1, 3, and 6 days post-infection (dpi), and comprehensive lipidomic analysis was performed using high-performance liquid chromatography-linear trap quadrupole-Orbitrap mass spectrometry, as well as gene expression analyses. The most prominent feature of the lipid profile in lethally infected mice was the elevated plasma concentrations of phosphatidylethanolamines (PEs) containing polyunsaturated fatty acid (PUFA) at 3 dpi. Furthermore, the facilitation of PUFA-containing phospholipid production in the lungs, but not in the liver, was suggested by gene expression and lipidomic analysis of tissue samples. Given the increased plasma or serum levels of PUFA-containing PEs in patients with other viral infections, especially in severe cases, the elevation of these phospholipids in circulation could be a biomarker of infection and the severity of infectious diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: