Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia.

  • Atsushi Hoshino‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2012‎

Inhibition of tumor suppressor p53 is cardioprotective against ischemic injury and provides resistance to subsequent cardiac remodeling. We investigated p53-mediated expansion of ischemic damage with a focus on mitochondrial integrity in association with autophagy and apoptosis. p53(-/-) heart showed that autophagic flux was promoted under ischemia without a change in cardiac tissue ATP content. Electron micrographs revealed that ischemic border zone in p53(-/-) mice had 5-fold greater numbers of autophagic vacuoles containing mitochondria, indicating the occurrence of mitophagy, with an apparent reduction of abnormal mitochondria compared with those in WT mice. Analysis of autophagic mediators acting downstream of p53 revealed that TIGAR (TP53-induced glycolysis and apoptosis regulator) was exclusively up-regulated in ischemic myocardium. TIGAR(-/-) mice exhibited the promotion of mitophagy followed by decrease of abnormal mitochondria and resistance to ischemic injury, consistent with the phenotype of p53(-/-) mice. In p53(-/-) and TIGAR(-/-) ischemic myocardium, ROS production was elevated and followed by Bnip3 activation which is an initiator of mitophagy. Furthermore, the activation of Bnip3 and mitophagy due to p53/TIGAR inhibition were reversed with antioxidant N-acetyl-cysteine, indicating that this adaptive response requires ROS signal. Inhibition of mitophagy using chloroquine in p53(-/-) or TIGAR(-/-) mice exacerbated accumulation of damaged mitochondria to the level of wild-type mice and attenuated cardioprotective action. These findings indicate that p53/TIGAR-mediated inhibition of myocyte mitophagy is responsible for impairment of mitochondrial integrity and subsequent apoptosis, the process of which is closely involved in p53-mediated ventricular remodeling after myocardial infarction.


D-Glutamate is metabolized in the heart mitochondria.

  • Makoto Ariyoshi‎ et al.
  • Scientific reports‎
  • 2017‎

D-Amino acids are enantiomers of L-amino acids and have recently been recognized as biomarkers and bioactive substances in mammals, including humans. In the present study, we investigated functions of the novel mammalian mitochondrial protein 9030617O03Rik and showed decreased expression under conditions of heart failure. Genomic sequence analyses showed partial homology with a bacterial aspartate/glutamate/hydantoin racemase. Subsequent determinations of all free amino acid concentrations in 9030617O03Rik-deficient mice showed high accumulations of D-glutamate in heart tissues. This is the first time that a significant amount of D-glutamate was detected in mammalian tissue. Further analysis of D-glutamate metabolism indicated that 9030617O03Rik is a D-glutamate cyclase that converts D-glutamate to 5-oxo-D-proline. Hence, this protein is the first identified enzyme responsible for mammalian D-glutamate metabolism, as confirmed in cloning analyses. These findings suggest that D-glutamate and 5-oxo-D-proline have bioactivities in mammals through the metabolism by D-glutamate cyclase.


An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy.

  • Mikihiko Nakaoka‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Alpha-adrenergic agonists is known to be protective in cardiac myocytes from apoptosis induced by beta-adrenergic stimulation. Although there has been a recent focus on the role of cardiac autophagy in heart failure, its role in heart failure with adrenergic overload has not yet been elucidated. In the present study, we investigated the contribution of autophagy to cardiac failure during adrenergic overload both in vitro and in vivo. Neonatal rat cardiac myocytes overexpressing GFP-tagged LC3 were prepared and stimulated with the alpha1-adrenergic agonist, phenylephrine (PE), the beta-adrenergic agonist, isoproterenol (ISO), or norepinephrine (NE) in order to track changes in the formation of autophagosomes in vitro. All adrenergic stimulators increased cardiac autophagy by stimulating autophagic flux. Blocking autophagy by the knockdown of autophagy-related 5 (ATG5) exacerbated ISO-induced apoptosis and negated the anti-apoptotic effects of PE, which indicated the cardioprotective role of autophagy during adrenergic overload. PE-induced cardiac autophagy was mediated by the PI3-kinase/Akt pathway, but not by MEK/ERK, whereas both pathways mediated the anti-apoptotic effects of PE. Knock down of Akt1 was the most essential among the three Akt family members examined for the induction of cardiac autophagy. The four-week administration of PE kept the high level of cardiac autophagy without heart failure in vivo, whereas autophagy levels in a myocardium impaired by four-week persistent administration of ISO or NE were the same with the control state. These present study indicated that cardiac autophagy played a protective role during adrenergic overload and also that the Akt pathway could mediate cardiac autophagy for the anti-apoptotic effects of the alpha-adrenergic pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: