Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone.

  • Christina Vrahnas‎ et al.
  • Nature communications‎
  • 2019‎

Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass.


Determination of cell fate in skeletal muscle following BMP gene transfer by in vivo electroporation.

  • Mariko Kawai‎ et al.
  • European journal of histochemistry : EJH‎
  • 2017‎

We previously developed a novel method for gene transfer, which combined a non-viral gene expression vector with transcutaneous in vivo electroporation. We applied this method to transfer the bone morphogenetic protein (BMP) gene and induce ectopic bone formation in rat skeletal muscles. At present, it remains unclear which types of cells can differentiate into osteogenic cells after BMP gene transfer by in vivo electroporation. Two types of stem cells in skeletal muscle can differentiate into osteogenic cells: muscle-derived stem cells, and bone marrow-derived stem cells in the blood. In the present study, we transferred the BMP gene into rat skeletal muscles. We then stained tissues for several muscle-derived stem cell markers (e.g., Pax7, M-cadherin), muscle regeneration-related markers (e.g., Myod1, myogenin), and an inflammatory cell marker (CD68) to follow cell differentiation over time. Our results indicate that, in the absence of BMP, the cell population undergoes muscle regeneration, whereas in its presence, it can differentiate into osteogenic cells. Commitment towards either muscle regeneration or induction of ectopic bone formation appears to occur five to seven days after BMP gene transfer.


Reduction of protein phosphatase 2A Cα promotes in vivo bone formation and adipocyte differentiation.

  • Kaya Yoshida‎ et al.
  • Molecular and cellular endocrinology‎
  • 2018‎

Serine/threonine protein phosphatase 2A (PP2A) regulates diverse physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Previously, we demonstrated that silencing of the α-isoform of PP2A catalytic subunit (PP2A Cα) in osteoblasts accelerated osteoblast differentiation, whereas its overexpression suppressed differentiation. In this study, we examined the role of PP2A Cα in in vivo bone formation by generating transgenic mice (PP2A-Tg), in which the dominant negative form of PP2A Cα was specifically expressed in osteoblasts. PP2A-Tg mice exhibited an increase in body weight, cortical bone mineral density, and cortical bone thickness. Interestingly, they also displayed higher amounts of adipose tissue in the bone marrow of tibiae. The co-culture study showed that PP2A Cα-knockdown osteoblasts stimulated adipocyte differentiation from undifferentiated mesenchymal cells via upregulation of the adipocyte marker genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα). These results indicated that the reduction of PP2A Cα levels in osteoblasts promoted bone formation in vivo. Additionally, PP2A Cα in osteoblasts was also potentially involved in controlling adipocyte differentiation through a paracrine mechanism.


Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale.

  • Jingjing Kobayashi-Sun‎ et al.
  • Communications biology‎
  • 2020‎

Differentiation of osteoclasts (OCs) from hematopoietic cells requires cellular interaction with osteoblasts (OBs). Due to the difficulty of live-imaging in the bone, however, the cellular and molecular mechanisms underlying intercellular communication involved in OC differentiation are still elusive. Here, we develop a fracture healing model using the scale of trap:GFP; osterix:mCherry transgenic zebrafish to visualize the interaction between OCs and OBs. Transplantation assays followed by flow cytometric analysis reveal that most trap:GFPhigh OCs in the fractured scale are detected in the osterix:mCherry+ fraction because of uptake of OB-derived extracellular vesicles (EVs). In vivo live-imaging shows that immature OCs actively interact with osterix:mCherry+ OBs and engulf EVs prior to convergence at the fracture site. In vitro cell culture assays show that OB-derived EVs promote OC differentiation via Rankl signaling. Collectively, these data suggest that EV-mediated intercellular communication with OBs plays an important role in the differentiation of OCs in bone tissue.


Extracellular vesicles of P. gingivalis-infected macrophages induce lung injury.

  • Kayo Yoshida‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2021‎

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Development of oral epithelial cell line ROE2 with differentiation potential from transgenic rats harboring temperature-sensitive simian virus40 large T-antigen gene.

  • Yoshiaki Tabuchi‎ et al.
  • Experimental animals‎
  • 2014‎

We have developed an immortalized oral epithelial cell line, ROE2, from fetal transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene. The cells grew continuously at either a permissive temperature of 33°C or an intermediate temperature of 37°C. At the nonpermissive temperature of 39°C, on the other hand, growth decreased significantly, and the Sub-G1 phase of the cell cycle increased, indicating that the cells undergo apoptosis at a nonpermissive temperature. Histological and immunocytochemical analyses revealed that ROE2 cells at 37°C had a stratified epithelial-like morphology and expressed cytokeratins Krt4 and Krt13, marker proteins for oral nonkeratinized epithelial cells. Global-scale comprehensive microarray analysis, coupled with bioinformatics tools, demonstrated a significant gene network that was obtained from the upregulated genes. The gene network contained 16 genes, including Cdkn1a, Fos, Krt13, and Prdm1, and was associated mainly with the biological process of skin development in the category of biological functions, organ development. These four genes were validated by quantitative real-time polymerase chain reaction, and the results were nearly consistent with the microarray data. It is therefore anticipated that this cell line will be useful as an in vitro model for studies such as physiological functions, as well as for gene expression in oral epithelial cells.


Two osteoclastic markers expressed in multinucleate osteoclasts of goldfish scales.

  • Kyoichi Azuma‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Complementary DNAs encoding two major osteoclastic markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin K (Cath K) were cloned from the scales of a teleost, the goldfish. This is the first report of the full coding sequence of TRAP and Cath K molecules in fish. In the goldfish scale both TRAP and Cath K mRNAs were expressed in the multinucleate osteoclasts, which showed large numbers of mitochondria and lysosomes, and a well developed ruffled border. These characteristic features of osteoclasts in the scales are similar to those in mammals. Most teleosts use the scale as an internal calcium reservoir during the reproductive season. The expression of TRAP and Cath K mRNAs in the scale significantly increased in April, which is a reproductive season, compared with that in October, a non-reproductive season. Thus, both of these molecular markers should be useful for the study of osteoclasts in the teleost scale.


Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells.

  • Yuhan He‎ et al.
  • Archives of oral biology‎
  • 2020‎

Porphyromonas gingivalis (P. gingivalis) is a major bacterium responsible for the progression of periodontitis. P. gingivalis produces small vesicles called outer membrane vesicles (OMVs) containing virulence factors. Increasing evidence suggests a close relationship between periodontitis and respiratory system diseases, such as aspiration pneumonia. However, little is known about whether P. gingivalis OMVs give rise to the impediment of lung epithelial cells. We investigated the effect of the OMVs on cell viability and tight junctions of lung epithelial cells.


N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium.

  • Jiajie Guo‎ et al.
  • Cellular signalling‎
  • 2020‎

Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 μM and 50 μM AHL triggered opposing osteoblast fates. At 50 μM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 μM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 μM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 μM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 μM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.


Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver.

  • Mariko Seyama‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

Outer membrane vesicles (OMVs) are nanosized particles derived from the outer membrane of gram-negative bacteria. Oral bacterium Porphyromonas gingivalis (Pg) is known to be a major pathogen of periodontitis that contributes to the progression of periodontal disease by releasing OMVs. The effect of Pg OMVs on systemic diseases is still unknown. To verify whether Pg OMVs affect the progress of diabetes mellitus, we analyzed the cargo proteins of vesicles and evaluated their effect on hepatic glucose metabolism. Here, we show that Pg OMVs were equipped with Pg-derived proteases gingipains and translocated to the liver in mice. In these mice, the hepatic glycogen synthesis in response to insulin was decreased, and thus high blood glucose levels were maintained. Pg OMVs also attenuated the insulin-induced Akt/glycogen synthase kinase-3 β (GSK-3β) signaling in a gingipain-dependent fashion in hepatic HepG2 cells. These results suggest that the delivery of gingipains mediated by Pg OMV elicits changes in glucose metabolisms in the liver and contributes to the progression of diabetes mellitus.


Melatonin is a potential drug for the prevention of bone loss during space flight.

  • Mika Ikegame‎ et al.
  • Journal of pineal research‎
  • 2019‎

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Mechanical stretching determines the orientation of osteoblast migration and cell division.

  • Fumiko Takemoto‎ et al.
  • Anatomical science international‎
  • 2023‎

Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.


Morphological and Functional Analyses of the Tight Junction in the Palatal Epithelium of Mouse.

  • Noriko Shiotsu‎ et al.
  • Acta histochemica et cytochemica‎
  • 2017‎

Tight junction (TJ) is one of the cell-cell junctions and known to have the barrier and fence functions between adjacent cells in both simple and stratified epithelia. We examined the distribution pattern, constitutive proteins, and permeability of TJ in the stratified squamous epithelium of the palatal mucosa of mice. Ultrastructural observations based on the ultrathin section and freeze-fracture methods revealed that poorly developed TJs are located at the upper layer of the stratum granulosum. The positive immunofluorescence of occludin (OCD), claudin (CLD)-1 and -4 were localized among the upper layer of the stratum granulosum showing a dot-like distribution pattern. And CLD-1 and -4 were localized among the stratum spinosum and the lower part of stratum granulosum additionally showed a positive reaction along the cell profiles. Western blotting of TJ constitutive proteins showed OCD, CLD-1, -2, -4, and -5 bands. The permeability test using biotin as a tracer revealed both the areas where biotin passed through beyond OCD positive points and the areas where biotin stopped at OCD positive points. These results show that poor TJs localize at the upper layer of the stratum granulosum of the palatal epithelium, and the TJs are leaky and include at least CLD-1 and -4.


Oral administration of melatonin contained in drinking water increased bone strength in naturally aged mice.

  • Junko Igarashi-Migitaka‎ et al.
  • Acta histochemica‎
  • 2020‎

Melatonin has recently been found to be a possible new regulator of bone metabolism. However, the influence of melatonin in natural age-related osteoporosis has not been fully elucidated yet, although there have been some reports regarding postmenopausal osteoporosis with melatonin treatments. The present study investigated the effects of long-term melatonin administration during the aging process on bone metabolism. Using quantitative computed tomography methods, we found that the total bone density of both the femur metaphysis and diaphysis decreased significantly in 20-month-old male mice. In the metaphysis, both trabecular bone mass and Polar-Strength Strain Index (SSI), which is an index of bone strength, decreased significantly. Judging from bone histomorphometry analysis, trabecular bone in 20-month-old male mice decreases significantly with age and is small and sparse, as compared to that of 4-month-old male mice. Loss of trabecular bone is one possible cause of loss of bone strength in the femoral bone. In the metaphysis, the melatonin administration group had significantly higher trabecular bone density than the non-administration group. The Polar-SSI, cortical area, and periosteal circumference in the diaphysis was also significantly higher with melatonin treatments. Since the melatonin receptor, MT2, was detected in both osteoblasts and osteoclasts of the femoral bone of male mice, we expect that melatonin acts on osteoblasts and osteoclasts to maintain the bone strength of the diaphysis and metaphysis. Thus, melatonin is a potential drug for natural age-related osteoporosis.


Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa.

  • Maho Kodama‎ et al.
  • Endocrinology‎
  • 2015‎

The role of anti-Müllerian hormone (AMH) during gonad development has been studied extensively in many species of mammal, bird, reptile, and fish but remains unresolved in amphibians. In male mammalian embryos, Sox9 activates AMH expression, which initiates regression of the Müllerian ducts. However, Sox9 (Sry-related HMG box 9) is unlikely to initiate AMH in chicken, because AMH precedes Sox9 expression in this species. To clarify whether AMH is involved in testicular differentiation in amphibians, we cloned the full-length AMH cDNA from the Japanese wrinkled frog, Rana rugosa. The AMH gene, which appears to be autosomal, is exclusively expressed in the testis of adult frog among 8 different tissues examined; Sertoli cells are probably responsible for its expression. AMH expression was found in the undifferentiated gonad of both male and female tadpoles, increasing in the differentiating testis. Moreover, we observed consensus binding sites for Sox9 in the 5'-flanking region of the AMH gene. Sox9 stimulated statistically significant AMH expression in luciferase reporter assays when coexpressed in Xenopus kidney-derived A6 cells. However, Sox9 expression showed no sexual dimorphism when AMH expression was up-regulated in the developing testis. These results, taken together, suggest that AMH is probably involved in testicular differentiation in R. rugosa, although an additional, perhaps tissue-specific, transcription factor may be required for the regulation of AMH transcription.


Involvement of androgen receptor in sex determination in an amphibian species.

  • Jun Fujii‎ et al.
  • PloS one‎
  • 2014‎

In mice and humans, the androgen receptor (AR) gene, located on the X chromosome, is not known to be involved in sex determination. In the Japanese frog Rana rugosa the AR is located on the sex chromosomes (X, Y, Z and W). Phylogenetic analysis shows that the AR on the X chromosome (X-AR) of the Korean R. rugosa is basal and segregates into two clusters: one containing W-AR of Japanese R. rugosa, the other containing Y-AR. AR expression is twice as high in ZZ (male) compared to ZW (female) embryos in which the W-AR is barely expressed. Higher AR-expression may be associated with male sex determination in this species. To examine whether the Z-AR is involved in sex determination in R. rugosa, we produced transgenic (Tg) frogs carrying an exogenous Z-AR. Analysis of ZW Tg frogs revealed development of masculinized gonads or 'ovotestes'. Expression of CYP17 and Dmrt1, genes known to be activated during normal male gonadal development, were up-regulated in the ZW ovotestis. Testosterone, supplied to the rearing water, completed the female-to-male sex-reversal in the AR-Tg ZW frogs. Here we report that Z-AR is involved in male sex-determination in an amphibian species.


Neuropilin 1 (NRP1) Positively Regulates Adipogenic Differentiation in C3H10T1/2 Cells.

  • Yaqiong Yu‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for several ligands, is highly expressed in many kinds of mesenchymal stem cells (MSCs), but its function is poorly understood. In this study, we explored the roles of full-length NRP1 and glycosaminoglycan (GAG)-modifiable NRP1 in adipogenesis in C3H10T1/2 cells. The expression of full-length NRP1 and GAG-modifiable NRP1 increased during adipogenic differentiation in C3H10T1/2 cells. NRP1 knockdown repressed adipogenesis while decreasing the levels of Akt and ERK1/2 phosphorylation. Moreover, the scaffold protein JIP4 was involved in adipogenesis in C3H10T1/2 cells by interacting with NRP1. Furthermore, overexpression of non-GAG-modifiable NRP1 mutant (S612A) greatly promoted adipogenic differentiation, accompanied by upregulation of the phosphorylated Akt and ERK1/2. Taken together, these results indicate that NRP1 is a key regulator that promotes adipogenesis in C3H10T1/2 cells by interacting with JIP4 and activating the Akt and ERK1/2 pathway. Non-GAG-modifiable NRP1 mutant (S612A) accelerates the process of adipogenic differentiation, suggesting that GAG glycosylation is a negative post-translational modification of NRP1 in adipogenic differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: