Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

The SUMO protease SENP6 is essential for inner kinetochore assembly.

  • Debaditya Mukhopadhyay‎ et al.
  • The Journal of cell biology‎
  • 2010‎

We have analyzed the mitotic function of SENP6, a small ubiquitin-like modifier (SUMO) protease that disassembles conjugated SUMO-2/3 chains. Cells lacking SENP6 showed defects in spindle assembly and metaphase chromosome congression. Analysis of kinetochore composition in these cells revealed that a subset of proteins became undetectable on inner kinetochores after SENP6 depletion, particularly the CENP-H/I/K complex, whereas other changes in kinetochore composition mimicked defects previously reported to result from CENP-H/I/K depletion. We further found that CENP-I is degraded through the action of RNF4, a ubiquitin ligase which targets polysumoylated proteins for proteasomal degradation, and that SENP6 stabilizes CENP-I by antagonizing RNF4. Together, these findings reveal a novel mechanism whereby the finely balanced activities of SENP6 and RNF4 control vertebrate kinetochore assembly through SUMO-targeted destabilization of inner plate components.


A role for Nup153 in nuclear assembly reveals differential requirements for targeting of nuclear envelope constituents.

  • Dollie LaJoie‎ et al.
  • Molecular biology of the cell‎
  • 2022‎

Assembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin. In contrast, effects on lamin A and SUN2 were minimal, pointing to differential requirements for the ongoing targeting of NE proteins. Further, distinct mistargeting phenotypes arose among the proteins that require Nup153 for NE targeting. Thus, disrupting the function of Nup153 in nuclear formation reveals several previously undescribed features important for establishing nuclear architecture: 1) a role for a nuclear basket constituent in ongoing recruitment of nuclear envelope components, 2) two functionally separable phases of NE formation in mammalian cells, and 3) distinct requirements of individual NE residents for continued targeting during the expansion phase of NE reformation.


Nuclear speckle integrity and function require TAO2 kinase.

  • Shengyan Gao‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.


Phosphorylation of Xenopus p31(comet) potentiates mitotic checkpoint exit.

  • Min Mo‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2015‎

p31(comet) plays an important role in spindle assembly checkpoint (SAC) silencing. However, how p31(comet)'s activity is regulated remains unclear. Here we show that the timing of M-phase exit in Xenopus egg extracts (XEEs) depends upon SAC activity, even under conditions that are permissive for spindle assembly. p31(comet) antagonizes the SAC, promoting XEE progression into anaphase after spindles are fully formed. We further show that mitotic p31(comet) phosphorylation by Inhibitor of nuclear factor κ-B kinase-β (IKK-β) enhances this role in SAC silencing. Together, our findings implicate IKK-β in the control of anaphase timing in XEE through p31(comet) activation and SAC downregulation.


Quantitative assessment of chromosome instability induced through chemical disruption of mitotic progression.

  • Sarine Markossian‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2016‎

Most solid tumors are aneuploid, carrying an abnormal number of chromosomes, and they frequently missegregate whole chromosomes in a phenomenon termed chromosome instability (CIN). While CIN can be provoked through disruption of numerous mitotic pathways, it is not clear which of these mechanisms are most critical, or whether alternative mechanisms could also contribute significantly in vivo. One difficulty in determining the relative importance of candidate CIN regulators has been the lack of a straightforward, quantitative assay for CIN in live human cells: While gross mitotic abnormalities can be detected visually, moderate levels of CIN may not be obvious, and are thus problematic to measure. To address this issue, we have developed the first Human Artificial Chromosome (HAC)-based quantitative live-cell assay for mitotic chromosome segregation in human cells. We have produced U2OS-Phoenix cells carrying the alphoid(tetO)-HAC encoding copies of eGFP fused to the destruction box (DB) of anaphase promoting complex/cyclosome (APC/C) substrate hSecurin and sequences encoding the tetracycline repressor fused to mCherry (TetR-mCherry). Upon HAC missegregation, daughter cells that do not obtain a copy of the HAC are GFP negative in the subsequent interphase. The HAC can also be monitored live following the TetR-mCherry signal. U2OS-Phoenix cells show low inherent levels of CIN, which can be enhanced by agents that target mitotic progression through distinct mechanisms. This assay allows direct detection of CIN induced by clinically important agents without conspicuous mitotic defects, allowing us to score increased levels of CIN that fall below the threshold required for discernable morphological disruption.


Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2.

  • Kin-Hoe Chow‎ et al.
  • Nucleus (Austin, Tex.)‎
  • 2012‎

Numerous enzymes of the mammalian SUMO modification pathway, including two members of the SUMO protease family, SENP2 and SENP1, localize to the nuclear periphery. The SUMO proteases play roles both in processing SUMO during the biogenesis of this peptide moiety and also in reversing SUMO modification on specific targets to control the activities conferred by this post-translational modification. Although interaction with the C-terminal domain of the nucleoporin Nup153 is thought to contribute to SENP2 localization at the nuclear pore complex, little is known about the binding partners of SENP1 at the nuclear periphery. We have found that Nup153 binds to both SENP1 and SENP2 and does so by interacting with the unique N-terminal domain of Nup153 as well as a specific region within the C-terminal FG-rich region. We have further found that Nup153 is a substrate for sumoylation, with this modification kept in check by these two SUMO proteases. Specifically, either RNAi depletion of SENP1/SENP2 or expression of dominantly interfering mutants of these proteins results in increased sumoylation of endogenous Nup153. While SENP1 and SENP2 share many characteristics, we show here that SENP1 levels are influenced by the presence of Nup153, whereas SENP2 is not sensitive to changes in Nup153 abundance.


Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation.

  • Alexander Samoshkin‎ et al.
  • PloS one‎
  • 2009‎

Condensins I and II in vertebrates are essential ATP-dependent complexes necessary for chromosome condensation in mitosis. Condensins depletion is known to perturb structure and function of centromeres, however the mechanism of this functional link remains elusive. Depletion of condensin activity is now shown to result in a significant loss of loading of CENP-A, the histone H3 variant found at active centromeres and the proposed epigenetic mark of centromere identity. Absence of condensins and/or CENP-A insufficiency produced a specific kinetochore defect, such that a functional mitotic checkpoint cannot prevent chromosome missegregation resulting from improper attachment of sister kinetochores to spindle microtubules. Spindle microtubule-dependent deformation of both inner kinetochores and the HEC1/Ndc80 microtubule-capturing module, then results in kinetochore separation from the Aurora B pool and ensuing reduced kinase activity at centromeres. Moreover, recovery from mitosis-inhibition by monastrol revealed a high incidence of merotelic attachment that was nearly identical with condensin depletion, Aurora B inactivation, or both, indicating that the Aurora B dysfunction is the key defect leading to chromosome missegregation in condensin-depleted cells. Thus, beyond a requirement for global chromosome condensation, condensins play a pivotal role in centromere assembly, proper spatial positioning of microtubule-capturing modules and positioning complexes of the inner centromere versus kinetochore plates.


The SUMO proteases SENP1 and SENP2 play a critical role in nucleoporin homeostasis and nuclear pore complex function.

  • Kin-Hoe Chow‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Nuclear pore complexes are composed of ∼30 different proteins, each present at the pore in multiple copies. Together these proteins create specialized channels that convey cargo between the cytoplasm and the nuclear interior. With the building blocks of nuclear pores identified, one challenge is to decipher how these proteins are coordinately produced and assembled into macromolecular pore structures with each cell division. Specific individual pore proteins and protein cofactors have been probed for their role in the assembly process, as well as certain kinases that add a layer of regulation via the phosphorylation status of nucleoporins. Other posttranslational modifications are candidates for coordinating events of pore assembly as well. In this study of two pore-associated small ubiquitin-like modifier (SUMO) proteases, sentrin/SUMO-specific protease 1 (SENP1) and SENP2, we observe that many nucleoporins are mislocalized and, in some cases, reduced in level when SENP1 and SENP2 are codepleted. The pore complexes present under these conditions are still capable of transport, although the kinetics of specific cargo is altered. These results reveal a new role for the pore-associated SENPs in nucleoporin homeostasis and in achieving proper configuration of the nuclear pore complex.


SUSP1 antagonizes formation of highly SUMO2/3-conjugated species.

  • Debaditya Mukhopadhyay‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Small ubiquitin-related modifier (SUMO) processing and deconjugation are mediated by sentrin-specific proteases/ubiquitin-like proteases (SENP/Ulps). We show that SUMO-specific protease 1 (SUSP1), a mammalian SENP/Ulp, localizes within the nucleoplasm. SUSP1 depletion within cell lines expressing enhanced green fluorescent protein (EGFP) fusions to individual SUMO paralogues caused redistribution of EGFP-SUMO2 and -SUMO3, particularly into promyelocytic leukemia (PML) bodies. Further analysis suggested that this change resulted primarily from a deficit of SUMO2/3-deconjugation activity. Under these circumstances, PML bodies became enlarged and increased in number. We did not observe a comparable redistribution of EGFP-SUMO1. We have investigated the specificity of SUSP1 using vinyl sulfone inhibitors and model substrates. We found that SUSP1 has a strong paralogue bias toward SUMO2/3 and that it acts preferentially on substrates containing three or more SUMO2/3 moieties. Together, our findings argue that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.


Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases.

  • Chawon Yun‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Ubiquitin-like protein/sentrin-specific proteases (Ulp/SENPs) mediate both processing and deconjugation of small ubiquitin-like modifier proteins (SUMOs). Here, we show that Ulp/SENP family members SENP3 and SENP5 localize within the granular component of the nucleolus, a subnucleolar compartment that contains B23/nucleophosmin. B23/nucleophosmin is an abundant shuttling phosphoprotein, which plays important roles in ribosome biogenesis and which has been strongly implicated in hematopoietic malignancies. Moreover, we found that B23/nucleophosmin binds SENP3 and SENP5 in Xenopus laevis egg extracts and that it is essential for stable accumulation of SENP3 and SENP5 in mammalian tissue culture cells. After either codepletion of SENP3 and SENP5 or depletion of B23/nucleophosmin, we observed accumulation of SUMO proteins within nucleoli. Finally, depletion of these Ulp/SENPs causes defects in ribosome biogenesis reminiscent of phenotypes observed in the absence of B23/nucleophosmin. Together, these results suggest that regulation of SUMO deconjugation may be a major facet of B23/nucleophosmin function in vivo.


RanBP1 governs spindle assembly by defining mitotic Ran-GTP production.

  • Michael Shaofei Zhang‎ et al.
  • Developmental cell‎
  • 2014‎

Accurate control of the Ras-related nuclear protein (Ran) GTPase cycle depends on the regulated activity of regulator of chromosome condensation 1 (RCC1), Ran's nucleotide exchange factor. RanBP1 has been characterized as a coactivator of the Ran GTPase-activating protein RanGAP1. RanBP1 can also form a stable complex with Ran and RCC1, although the dynamics and function of this complex remain poorly understood. Here, we show that formation of the heterotrimeric RCC1/Ran/RanBP1 complex in M phase Xenopus egg extracts controls both RCC1's enzymatic activity and partitioning between the chromatin-bound and soluble pools of RCC1. This mechanism is critical for spatial control of Ran-guanosine triphosphate (GTP) gradients that guide mitotic spindle assembly. Moreover, phosphorylation of RanBP1 drives changes in the dynamics of chromatin-bound RCC1 pools at the metaphase-anaphase transition. Our findings reveal an important mitotic role for RanBP1, controlling the spatial distribution and magnitude of mitotic Ran-GTP production and thereby ensuring accurate execution of Ran-dependent mitotic events.


The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores.

  • Ram Kumar Mishra‎ et al.
  • Nature cell biology‎
  • 2010‎

The metazoan nuclear pore complex (NPC) disassembles during mitosis, and many of its constituents distribute onto spindles and kinetochores, including the Nup107-160 sub-complex. We have found that Nup107-160 interacts with the gamma-tubulin ring complex (gamma-TuRC), an essential and conserved microtubule nucleator, and recruits gamma-TuRC to unattached kinetochores. The unattached kinetochores nucleate microtubules in a manner that is regulated by Ran GTPase; such microtubules contribute to the formation of kinetochore fibres (k-fibres), microtubule bundles connecting kinetochores to spindle poles. Our data indicate that Nup107-160 and gamma-TuRC act cooperatively to promote spindle assembly through microtubule nucleation at kinetochores: HeLa cells lacking Nup107-160 or gamma-TuRC were profoundly deficient in kinetochore-associated microtubule nucleation. Moreover, co-precipitated Nup107-160- gamma-TuRC complexes nucleated microtubule formation in assays using purified tubulin. Although Ran did not regulate microtubule nucleation by gamma-TuRC alone, Nup107-160-gamma-TuRC complexes required Ran-GTP for microtubule nucleation. Collectively, our observations show that Nup107-160 promotes spindle assembly through Ran-GTP-regulated nucleation of microtubules by gamma-TuRC at kinetochores, and reveal a relationship between nucleoporins and the microtubule cytoskeleton.


SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation.

  • Jacqueline Gire O'Rourke‎ et al.
  • Cell reports‎
  • 2013‎

A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.


Association of RanGAP to nuclear pore complex component, RanBP2/Nup358, is required for pupal development in Drosophila.

  • Shane Chen‎ et al.
  • Cell reports‎
  • 2021‎

Ran's GTPase-activating protein (RanGAP) is tethered to the nuclear envelope (NE) in multicellular organisms. We investigated the consequences of RanGAP localization in human tissue culture cells and Drosophila. In tissue culture cells, disruption of RanGAP1 NE localization surprisingly has neither obvious impacts on viability nor nucleocytoplasmic transport of a model substrate. In Drosophila, we identified a region within nucleoporin dmRanBP2 required for direct tethering of dmRanGAP to the NE. A dmRanBP2 mutant lacking this region shows no apparent growth defects during larval stages but arrests at the early pupal stage. A direct fusion of dmRanGAP to the dmRanBP2 mutant rescues this arrest, indicating that dmRanGAP recruitment to dmRanBP2 per se is necessary for the pupal ecdysis sequence. Our results indicate that while the NE localization of RanGAP is widely conserved in multicellular organisms, the targeting mechanisms are not. Further, we find a requirement for this localization during pupal development.


A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission.

  • Mikhail Liskovykh‎ et al.
  • Genome research‎
  • 2019‎

One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.


Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3.

  • Ritu Chaudhary‎ et al.
  • eLife‎
  • 2017‎

Thousands of long noncoding RNAs (lncRNAs) have been discovered, yet the function of the vast majority remains unclear. Here, we show that a p53-regulated lncRNA which we named PINCR (p53-induced noncoding RNA), is induced ~100-fold after DNA damage and exerts a prosurvival function in human colorectal cancer cells (CRC) in vitro and tumor growth in vivo. Targeted deletion of PINCR in CRC cells significantly impaired G1 arrest and induced hypersensitivity to chemotherapeutic drugs. PINCR regulates the induction of a subset of p53 targets involved in G1 arrest and apoptosis, including BTG2, RRM2B and GPX1. Using a novel RNA pulldown approach that utilized endogenous S1-tagged PINCR, we show that PINCR associates with the enhancer region of these genes by binding to RNA-binding protein Matrin 3 that, in turn, associates with p53. Our findings uncover a critical prosurvival function of a p53/PINCR/Matrin 3 axis in response to DNA damage in CRC cells.


Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation.

  • Hélène Neyret-Kahn‎ et al.
  • Genome research‎
  • 2013‎

Despite numerous studies on specific sumoylated transcriptional regulators, the global role of SUMO on chromatin in relation to transcription regulation remains largely unknown. Here, we determined the genome-wide localization of SUMO1 and SUMO2/3, as well as of UBC9 (encoded by UBE2I) and PIASY (encoded by PIAS4), two markers for active sumoylation, along with Pol II and histone marks in proliferating versus senescent human fibroblasts together with gene expression profiling. We found that, whereas SUMO alone is widely distributed over the genome with strong association at active promoters, active sumoylation occurs most prominently at promoters of histone and protein biogenesis genes, as well as Pol I rRNAs and Pol III tRNAs. Remarkably, these four classes of genes are up-regulated by inhibition of sumoylation, indicating that SUMO normally acts to restrain their expression. In line with this finding, sumoylation-deficient cells show an increase in both cell size and global protein levels. Strikingly, we found that in senescent cells, the SUMO machinery is selectively retained at histone and tRNA gene clusters, whereas it is massively released from all other unique chromatin regions. These data, which reveal the highly dynamic nature of the SUMO landscape, suggest that maintenance of a repressive environment at histone and tRNA loci is a hallmark of the senescent state. The approach taken in our study thus permitted the identification of a common biological output and uncovered hitherto unknown functions for active sumoylation at chromatin as a key mechanism that, in dynamically marking chromatin by a simple modifier, orchestrates concerted transcriptional regulation of a network of genes essential for cell growth and proliferation.


Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells.

  • Sarita Raghunayakula‎ et al.
  • PloS one‎
  • 2015‎

Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological significance of the interaction between annulate lamellae pore complexes and nuclear transport complexes in mammalian cells.


SUMO-2/3 regulates topoisomerase II in mitosis.

  • Yoshiaki Azuma‎ et al.
  • The Journal of cell biology‎
  • 2003‎

We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase-anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.


Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway.

  • Vasilisa Aksenova‎ et al.
  • Nature communications‎
  • 2020‎

Nuclear pore complexes (NPCs) are important for cellular functions beyond nucleocytoplasmic trafficking, including genome organization and gene expression. This multi-faceted nature and the slow turnover of NPC components complicates investigations of how individual nucleoporins act in these diverse processes. To address this question, we apply an Auxin-Induced Degron (AID) system to distinguish roles of basket nucleoporins NUP153, NUP50 and TPR. Acute depletion of TPR causes rapid and pronounced changes in transcriptomic profiles. These changes are dissimilar to shifts observed after loss of NUP153 or NUP50, but closely related to changes caused by depletion of mRNA export receptor NXF1 or the GANP subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex. Moreover, TPR depletion disrupts association of TREX-2 subunits (GANP, PCID2, ENY2) to NPCs and results in abnormal RNA transcription and export. Our findings demonstrate a unique and pivotal role of TPR in gene expression through TREX-2- and/or NXF1-dependent mRNA turnover.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: