Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1-Met complex.

  • Paolo Giacobini‎ et al.
  • The Journal of cell biology‎
  • 2008‎

In mammals, reproduction is dependent on specific neurons secreting the neuropeptide gonadotropin hormone-releasing hormone-1 (GnRH-1). These cells originate during embryonic development in the olfactory placode and migrate into the forebrain, where they become integral members of the hypothalamic-pituitary-gonadal axis. This migratory process is regulated by a wide range of guidance cues, which allow GnRH-1 cells to travel over long distances to reach their appropriate destinations. The Semaphorin4D (Sema4D) receptor, PlexinB1, is highly expressed in the developing olfactory placode, but its function in this context is still unknown. Here, we demonstrate that PlexinB1-deficient mice exhibit a migratory defect of GnRH-1 neurons, resulting in reduction of this cell population in the adult brain. Moreover, Sema4D promotes directional migration in GnRH-1 cells by coupling PlexinB1 with activation of the Met tyrosine kinase (hepatocyte growth factor receptor). This work identifies a function for PlexinB1 during brain development and provides evidence that Sema4D controls migration of GnRH-1 neurons.


Cardiac concentric hypertrophy promoted by activated Met receptor is mitigated in vivo by inhibition of Erk1,2 signalling with Pimasertib.

  • Valentina Sala‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Cardiac hypertrophy is a major risk factor for heart failure. Hence, its attenuation represents an important clinical goal. Erk1,2 signalling is pivotal in the cardiac response to stress, suggesting that its inhibition may be a good strategy to revert heart hypertrophy. In this work, we unveiled the events associated with cardiac hypertrophy by means of a transgenic model expressing activated Met receptor. c-Met proto-oncogene encodes for the tyrosine kinase receptor of Hepatocyte growth factor and is a strong inducer of Ras-Raf-Mek-Erk1,2 pathway. We showed that three weeks after the induction of activated Met, the heart presents a remarkable concentric hypertrophy, with no signs of congestive failure and preserved contractility. Cardiac enlargement is accompanied by upregulation of growth-regulating transcription factors, natriuretic peptides, cytoskeletal proteins, and Extracellular Matrix remodelling factors (Timp1 and Pai1). At a later stage, cardiac hypertrophic remodelling results into heart failure with preserved systolic function. Prevention trial by suppressing activated Met showed that cardiac hypertrophy is reversible, and progression to heart failure is prevented. Notably, treatment with Pimasertib, Mek1 inhibitor, attenuates cardiac hypertrophy and remodelling. Our results suggest that modulation of Erk1.2 signalling may constitute a new therapeutic approach for treating cardiac hypertrophies.


A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging.

  • Silvia Giordano‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2017‎

The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice.


YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC.

  • Elena Ghiso‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.


A methodological approach to correlate tumor heterogeneity with drug distribution profile in mass spectrometry imaging data.

  • Mridula Prasad‎ et al.
  • GigaScience‎
  • 2020‎

Drug mass spectrometry imaging (MSI) data contain knowledge about drug and several other molecular ions present in a biological sample. However, a proper approach to fully explore the potential of such type of data is still missing. Therefore, a computational pipeline that combines different spatial and non-spatial methods is proposed to link the observed drug distribution profile with tumor heterogeneity in solid tumor. Our data analysis steps include pre-processing of MSI data, cluster analysis, drug local indicators of spatial association (LISA) map, and ions selection.


MiR-100 is a predictor of endocrine responsiveness and prognosis in patients with operable luminal breast cancer.

  • Annalisa Petrelli‎ et al.
  • ESMO open‎
  • 2020‎

Overexpression of miR-100 in stem cells derived from basal-like breast cancers causes loss of stemness, induction of luminal breast cancer markers and response to endocrine therapy. We, therefore, explored miR-100 as a novel biomarker in patients with luminal breast cancer.


Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody.

  • Chiara Modica‎ et al.
  • Cancers‎
  • 2020‎

The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different biological systems and is hardly predictable. In this study, we generated and characterized two single-chain antibody fragments derived from DN30, sharing the same variable regions but including linkers different in length and composition. The two engineered molecules bind MET with high affinity but induce different biological responses. One behaves as a MET-antagonist, promoting programmed cell death in MET "addicted" cancer cells. The other acts as a hepatocyte growth factor (HGF)-mimetic, protecting normal cells from doxorubicin-induced apoptosis. Thus, by engineering the same receptor antibody, it is possible to generate molecules enhancing or inhibiting apoptosis either to kill cancer cells or to protect healthy tissues from the injuries of chemotherapy.


Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging.

  • Lavinia Morosi‎ et al.
  • International journal of biological sciences‎
  • 2020‎

Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.


Co-occurring KRAS mutation/LKB1 loss in non-small cell lung cancer cells results in enhanced metabolic activity susceptible to caloric restriction: an in vitro integrated multilevel approach.

  • Elisa Caiola‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Non-small-cell lung cancer (NSCLC) is a heterogeneous disease, with multiple different oncogenic mutations. Approximately 25-30% of NSCLC patients present KRAS mutations, which confer poor prognosis and high risk of tumor recurrence. About half of NSCLCs with activating KRAS lesions also have deletions or inactivating mutations in the serine/threonine kinase 11 (LKB1) gene. Loss of LKB1 on a KRAS-mutant background may represent a significant source of heterogeneity contributing to poor response to therapy.


Clustered protocadherins methylation alterations in cancer.

  • Ana Florencia Vega-Benedetti‎ et al.
  • Clinical epigenetics‎
  • 2019‎

Clustered protocadherins (PCDHs) map in tandem at human chromosome 5q31 and comprise three multi-genes clusters: α-, β- and γ-PCDH. The expression of this cluster consists of a complex mechanism involving DNA hub formation through DNA-CCTC binding factor (CTCF) interaction. Methylation alterations can affect this interaction, leading to transcriptional dysregulation. In cancer, clustered PCDHs undergo a mechanism of long-range epigenetic silencing by hypermethylation.


A novel strategy for combination of clofarabine and pictilisib is synergistic in gastric cancer.

  • Shayan Khalafi‎ et al.
  • Translational oncology‎
  • 2022‎

Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.


Diverse MicroRNAs-mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia.

  • Rajesh Pal‎ et al.
  • Cell proliferation‎
  • 2022‎

Adult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown.


Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis.

  • Marta Anna Kowalik‎ et al.
  • Oncotarget‎
  • 2016‎

Metabolic changes are associated with cancer, but whether they are just bystander effects of deregulated oncogenic signaling pathways or characterize early phases of tumorigenesis remains unclear. Here we show in a rat model of hepatocarcinogenesis that early preneoplastic foci and nodules that progress towards hepatocellular carcinoma (HCC) are characterized both by inhibition of oxidative phosphorylation (OXPHOS) and by enhanced glucose utilization to fuel the pentose phosphate pathway (PPP). These changes respectively require increased expression of the mitochondrial chaperone TRAP1 and of the transcription factor NRF2 that induces the expression of the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD), following miR-1 inhibition. Such metabolic rewiring exclusively identifies a subset of aggressive cytokeratin-19 positive preneoplastic hepatocytes and not slowly growing lesions. No such metabolic changes were observed during non-neoplastic liver regeneration occurring after two/third partial hepatectomy. TRAP1 silencing inhibited the colony forming ability of HCC cells while NRF2 silencing decreased G6PD expression and concomitantly increased miR-1; conversely, transfection with miR-1 mimic abolished G6PD expression. Finally, in human HCC patients increased G6PD expression levels correlates with grading, metastasis and poor prognosis. Our results demonstrate that the metabolic deregulation orchestrated by TRAP1 and NRF2 is an early event restricted to the more aggressive preneoplastic lesions.


A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis.

  • Maria Maddalena Angioni‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second cause of cancer-related death. Search for genes/proteins whose expression can discriminate between normal and neoplastic liver is fundamental for diagnostic, prognostic and therapeutic purposes. Currently, the most used in vitro hepatocyte models to study molecular alterations underlying transformation include primary hepatocytes and transformed cell lines. However, each of these models presents limitations. Here we describe the isolation and characterization of two rat hepatocyte cell lines as tools to study liver carcinogenesis. Long-term stable cell lines were obtained from a HCC-bearing rat exposed to the Resistant-Hepatocyte protocol (RH cells) and from a rat subjected to the same model in the absence of carcinogenic treatment, thus not developing HCCs (RNT cells). The presence of several markers identified the hepatocytic origin of both cell lines and confirmed their purity. Although morphologically similar to normal primary hepatocytes, RNT cells were able to survive and grow in monolayer culture for months and were not tumorigenic in vivo. On the contrary, RH cells displayed tumor-initiating cell markers, formed numerous colonies in soft agar and spheroids when grown in 3D and were highly tumorigenic and metastatic after injection into syngeneic rats and immunocompromised mice. Moreover, RNT gene expression profile was similar to normal liver, while that of RH resembled HCC. In conclusion, the two cell lines here described represent a useful tool to investigate the molecular changes underlying hepatocyte transformation and to experimentally demonstrate their role in HCC development.


Distinct Mechanisms Are Responsible for Nrf2-Keap1 Pathway Activation at Different Stages of Rat Hepatocarcinogenesis.

  • Claudia Orrù‎ et al.
  • Cancers‎
  • 2020‎

Activation of the Nrf2-Keap1 pathway, the main intracellular defense against environmental stress, has been observed in several human cancers, including hepatocellular carcinoma (HCC). Here, we assessed whether distinct mechanisms of activation may be involved at different stages of hepatocarcinogenesis. We adopted an experimental model consisting of treatment with diethylnitrosamine (DENA) followed by a choline-devoid methionine-deficient (CMD) diet for 4 months. The CMD diet was then replaced with a basal diet, and the animals were killed at 6, 10 or 13 months after DENA injection. Nrf2 activation occurred at early steps of hepatocarcinogenesis and persisted throughout the tumorigenic process. While Nrf2 mutations were extremely frequent at early steps (90%), their incidence diminished with the progression to malignancy (25%). Conversely, while p62 was almost undetectable in early nodules, its accumulation occurred in HCCs, suggesting that Nrf2 pathway activation at late stages is mainly due to Keap1 sequestration by p62. We demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease, Nrf2 mutations are the earliest molecular changes responsible for the activation of the Nrf2-Keap1 pathway. The progressive loss of mutations associated with a concomitant p62 accumulation implies that distinct mechanisms are responsible for Nrf2-Keap1 pathway activation at different stages of hepatocarcinogenesis.


Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence.

  • Silvia Giordano‎ et al.
  • Liver international : official journal of the International Association for the Study of the Liver‎
  • 2020‎

Complete surgical resection with negative margin is one of the pillars in treatment of liver tumours. However, current techniques for intra-operative assessment of tumour resection margins are time-consuming and empirical. Mass spectrometry (MS) combined with artificial intelligence (AI) is useful for classifying tissues and provides valuable prognostic information. The aim of this study was to develop a MS-based system for rapid and objective liver cancer identification and classification.


Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming.

  • Marta Anna Kowalik‎ et al.
  • Journal of hepatology‎
  • 2020‎

Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs.


Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro.

  • Simona Gallo‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Doxorubicin anti-cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor-encoded by the Met gene-by an agonist monoclonal antibody (mAb) could protect against doxorubicin-induced cardiotoxicity.


A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine.

  • Carlos Sebastian‎ et al.
  • Nature communications‎
  • 2022‎

Although reprogramming of cellular metabolism is a hallmark of cancer, little is known about how metabolic reprogramming contributes to early stages of transformation. Here, we show that the histone deacetylase SIRT6 regulates tumor initiation during intestinal cancer by controlling glucose metabolism. Loss of SIRT6 results in an increase in the number of intestinal stem cells (ISCs), which translates into enhanced tumor initiating potential in APCmin mice. By tracking down the connection between glucose metabolism and tumor initiation, we find a metabolic compartmentalization within the intestinal epithelium and adenomas, where a rare population of cells exhibit features of Warburg-like metabolism characterized by high pyruvate dehydrogenase kinase (PDK) activity. Our results show that these cells are quiescent cells expressing +4 ISCs and enteroendocrine markers. Active glycolysis in these cells suppresses ROS accumulation and enhances their stem cell and tumorigenic potential. Our studies reveal that aerobic glycolysis represents a heterogeneous feature of cancer, and indicate that this metabolic adaptation can occur in non-dividing cells, suggesting a role for the Warburg effect beyond biomass production in tumors.


BRCA2 Germline Mutations Identify Gastric Cancers Responsive to PARP Inhibitors.

  • Annalisa Petrelli‎ et al.
  • Cancer research‎
  • 2023‎

Despite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as "benign." However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: