Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement.

  • Jose J De Vega‎ et al.
  • Scientific reports‎
  • 2015‎

Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection.


Genetic and Methylome Variation in Turkish Brachypodium Distachyon Accessions Differentiate Two Geographically Distinct Subpopulations.

  • Aleksandra Skalska‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Brachypodium distachyon (Brachypodium) is a non-domesticated model grass species that can be used to test if variation in genetic sequence or methylation are linked to environmental differences. To assess this, we collected seeds from 12 sites within five climatically distinct regions of Turkey. Seeds from each region were grown under standardized growth conditions in the UK to preserve methylated sequence variation. At six weeks following germination, leaves were sampled and assessed for genomic and DNA methylation variation. In a follow-up experiment, phenomic approaches were used to describe plant growth and drought responses. Genome sequencing and population structure analysis suggested three ancestral clusters across the Mediterranean, two of which were geographically separated in Turkey into coastal and central subpopulations. Phenotypic analyses showed that the coastal subpopulation tended to exhibit relatively delayed flowering and the central, increased drought tolerance as indicated by reduced yellowing. Genome-wide methylation analyses in GpC, CHG and CHH contexts also showed variation which aligned with the separation into coastal and central subpopulations. The climate niche modelling of both subpopulations showed a significant influence from the "Precipitation in the Driest Quarter" on the central subpopulation and "Temperature of the Coldest Month" on the coastal subpopulation. Our work demonstrates genetic diversity and variation in DNA methylation in Turkish accessions of Brachypodium that may be associated with climate variables and the molecular basis of which will feature in ongoing analyses.


Transcriptional and Metabolomic Analyses Indicate that Cell Wall Properties are Associated with Drought Tolerance in Brachypodium distachyon.

  • Ingo Lenk‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.


Identifying and validating the presence of Guanine-Quadruplexes (G4) within the blood fluke parasite Schistosoma mansoni.

  • Holly M Craven‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Schistosomiasis is a neglected tropical disease that currently affects over 250 million individuals worldwide. In the absence of an immunoprophylactic vaccine and the recognition that mono-chemotherapeutic control of schistosomiasis by praziquantel has limitations, new strategies for managing disease burden are urgently needed. A better understanding of schistosome biology could identify previously undocumented areas suitable for the development of novel interventions. Here, for the first time, we detail the presence of G-quadruplexes (G4) and putative quadruplex forming sequences (PQS) within the Schistosoma mansoni genome. We find that G4 are present in both intragenic and intergenic regions of the seven autosomes as well as the sex-defining allosome pair. Amongst intragenic regions, G4 are particularly enriched in 3´ UTR regions. Gene Ontology (GO) term analysis evidenced significant G4 enrichment in the wnt signalling pathway (p<0.05) and PQS oligonucleotides synthetically derived from wnt-related genes resolve into parallel and anti-parallel G4 motifs as elucidated by circular dichroism (CD) spectroscopy. Finally, utilising a single chain anti-G4 antibody called BG4, we confirm the in situ presence of G4 within both adult female and male worm nuclei. These results collectively suggest that G4-targeted compounds could be tested as novel anthelmintic agents and highlights the possibility that G4-stabilizing molecules could be progressed as candidates for the treatment of schistosomiasis.


Genotyping and Whole-Genome Resequencing of Welsh Sheep Breeds Reveal Candidate Genes and Variants for Adaptation to Local Environment and Socioeconomic Traits.

  • James Sweet-Jones‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Advances in genetic tools applied to livestock breeding has prompted research into the previously neglected breeds adapted to harsh local environments. One such group is the Welsh mountain sheep breeds, which can be farmed at altitudes of 300 m above sea level but are considered to have a low productive value because of their poor wool quality and small carcass size. This is contrary to the lowland breeds which are more suited to wool and meat production qualities, but do not fare well on upland pasture. Herein, medium-density genotyping data from 317 individuals representing 15 Welsh sheep breeds were used alongside the whole-genome resequencing data of 14 breeds from the same set to scan for the signatures of selection and candidate genetic variants using haplotype- and SNP-based approaches.


Genome-wide prediction of prokaryotic two-component system networks using a sequence-based meta-predictor.

  • Altan Kara‎ et al.
  • BMC bioinformatics‎
  • 2015‎

Two component systems (TCS) are signalling complexes manifested by a histidine kinase (receptor) and a response regulator (effector). They are the most abundant signalling pathways in prokaryotes and control a wide range of biological processes. The pairing of these two components is highly specific, often requiring costly and time-consuming experimental characterisation. Therefore, there is considerable interest in developing accurate prediction tools to lessen the burden of experimental work and cope with the ever-increasing amount of genomic information.


G-Anchor: a novel approach for whole-genome comparative mapping utilizing evolutionary conserved DNA sequences.

  • Vasileios Panagiotis E Lenis‎ et al.
  • GigaScience‎
  • 2018‎

Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses.


Whole genome analysis of a schistosomiasis-transmitting freshwater snail.

  • Coen M Adema‎ et al.
  • Nature communications‎
  • 2017‎

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Polyomic tools for an emerging livestock parasite, the rumen fluke Calicophoron daubneyi; identifying shifts in rumen functionality.

  • Kathryn M Huson‎ et al.
  • Parasites & vectors‎
  • 2018‎

Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting ruminant livestock in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms has not been confirmed in Europe, fatalities have been attributed to severe haemorrhagic enteritis of the small intestine resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently on productivity and economic management of infected livestock, have not been resolved. Limited publicly available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries.


Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans.

  • Corey Brelsfoard‎ et al.
  • PLoS neglected tropical diseases‎
  • 2014‎

Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: