Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation.

  • D Tien Nguyen‎ et al.
  • PLoS pathogens‎
  • 2010‎

Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSV-A2-GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The N-palmitoylated cysteine and the cationic lysines were identified as pivotal for enhanced virus binding. Surprisingly, we observed inhibition of RSV infection in immortalized epithelial cell lines, which was shown to be related to interactions between Pam3CSK4 and negatively charged glycosaminoglycans on these cells, which are known targets for binding of laboratory-adapted but not wild-type RSV. These data suggest a potential role for bacterial lipopeptides in enhanced binding of RSV and other viruses to their target cells, thus affecting viral entry or spread independent of TLR signaling. Moreover, our results also suggest a potential application for these synthetic lipopeptides as adjuvants for live-attenuated viral vaccines.


Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques.

  • Rik L de Swart‎ et al.
  • PLoS pathogens‎
  • 2007‎

Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression.


Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets.

  • Rory D de Vries‎ et al.
  • PLoS pathogens‎
  • 2017‎

Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.


First Report of Skunk Amdoparvovirus (Species Carnivore amdoparvovirus 4) in Europe in a Captive Striped Skunk (Mephitis mephitis).

  • Franziska K Kaiser‎ et al.
  • Viruses‎
  • 2023‎

Skunk amdoparvovirus (Carnivore amdoparvovirus 4, SKAV) is closely related to Aleutian mink disease virus (AMDV) and circulates primarily in striped skunks (Mephitis mephitis) in North America. SKAV poses a threat to mustelid species due to reported isolated infections of captive American mink (Neovison vison) in British Columbia, Canada. We detected SKAV in a captive striped skunk in a German zoo by metagenomic sequencing. The pathological findings are dominated by lymphoplasmacellular inflammation and reveal similarities to its relative Carnivore amdoparvovirus 1, the causative agent of Aleutian mink disease. Phylogenetic analysis of the whole genome demonstrated 94.80% nucleotide sequence identity to a sequence from Ontario, Canada. This study is the first case description of a SKAV infection outside of North America.


Canine Meningoencephalitis of Unknown Origin-The Search for Infectious Agents in the Cerebrospinal Fluid via Deep Sequencing.

  • Jasmin Nicole Nessler‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

Meningoencephalitis of unknown origin (MUO) describes a group of meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent has been suggested as one possible trigger of MUO but has not been proven so far. A relatively new method to screen for viral RNA or DNA is next-generation sequencing (NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in a sample is analyzed and scanned for known or unknown viruses. We examined fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent, single-primer amplification protocol to detect a possible infectious trigger. Analysis of sequencing reads obtained from the six CSF samples showed no evidence of a virus infection. The inability to detect a viral trigger which could be implicated in the development of MUO in the examined population of European dogs, suggests that the current techniques are not sufficiently sensitive to identify a possible virus infection, that the virus is already eliminated at the time-point of disease outbreak, the trigger might be non-infectious or that there is no external trigger responsible for initiating MUO in dogs.


Concurrent Detection of a Papillomatous Lesion and Sequence Reads Corresponding to a Member of the Family Adintoviridae in a Bell's Hinge-Back Tortoise (Kinixys belliana).

  • Johannes Hetterich‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2024‎

An adult male Bell's hinge-back tortoise (Kinixys belliana) was admitted to a veterinary clinic due to a swelling in the oral cavity. Physical examination revealed an approximately 2.5 × 1.5 cm sized, irregularly shaped tissue mass with villiform projections extending from its surface located in the oropharyngeal cavity. An initial biopsy was performed, and the lesion was diagnosed as squamous papilloma. Swabs taken for virological examination tested negative with specific PCRs for papillomavirus and herpesvirus. Further analysis of the oropharyngeal mass via metagenomic sequencing revealed sequence reads corresponding to a member of the family Adintoviridae. The tissue mass was removed one week after the initial examination. The oral cavity remained unsuspicious in follow-up examinations performed after one, five and twenty weeks. However, a regrowth of the tissue was determined 23 months after the initial presentation. The resampled biopsy tested negative for sequence reads of Adintoviridae. Conclusively, this report presents the diagnostic testing and therapy of an oral cavity lesion of unknown origin. The significance of concurrent metagenomic determination of adintovirus sequence reads within the tissue lesion is discussed.


Novel canine circovirus strains from Thailand: Evidence for genetic recombination.

  • Chutchai Piewbang‎ et al.
  • Scientific reports‎
  • 2018‎

Canine circoviruses (CanineCV's), belonging to the genus Circovirus of the Circoviridae family, were detected by next generation sequencing in samples from Thai dogs with respiratory symptoms. Genetic characterization and phylogenetic analysis of nearly complete CanineCV genomes suggested that natural recombination had occurred among different lineages of CanineCV's. Similarity plot and bootscaning analyses indicated that American and Chinese viruses had served as major and minor parental viruses, respectively. Positions of recombination breakpoints were estimated using maximum-likelihood frameworks with statistical significant testing. The putative recombination event was located in the Replicase gene, intersecting with open reading frame-3. Analysis of nucleotide changes confirmed the origin of the recombination event. This is the first description of naturally occurring recombinant CanineCV's that have resulted in the circulation of newly emerging CanineCV lineages.


An evolutionary divergent pestivirus lacking the Npro gene systemically infects a whale species.

  • Wendy K Jo‎ et al.
  • Emerging microbes & infections‎
  • 2019‎

Pestiviruses typically infect members of the order Artiodactyla, including ruminants and pigs, although putative rat and bat pestiviruses have also been described. In the present study, we identified and characterized an evolutionary divergent pestivirus in the toothed whale species, harbour porpoise (Phocoena phocoena). We tentatively named the virus Phocoena pestivirus (PhoPeV). PhoPeV displays a typical pestivirus genome organization except for the unique absence of Npro, an N-terminal autoprotease that targets the innate host immune response. Evolutionary evidence indicates that PhoPeV emerged following an interspecies transmission event from an ancestral pestivirus that expressed Npro. We show that 9% (n = 10) of stranded porpoises from the Dutch North Sea coast (n = 112) were positive for PhoPeV and they displayed a systemic infection reminiscent of non-cytopathogenic persistent pestivirus infection. The identification of PhoPeV extends the host range of pestiviruses to cetaceans (dolphins, whales, porpoises), which are considered to have evolved from artiodactyls (even-toed ungulates). Elucidation of the pathophysiology of PhoPeV infection and Npro unique absence will add to our understanding of molecular mechanisms governing pestivirus pathogenesis.


Swinepox Virus Strains Isolated from Domestic Pigs and Wild Boar in Germany Display Altered Coding Capacity in the Terminal Genome Region Encoding for Species-Specific Genes.

  • Franziska K Kaiser‎ et al.
  • Viruses‎
  • 2021‎

Swinepox virus (SWPV) is a globally distributed swine pathogen that causes sporadic cases of an acute poxvirus infection in domesticated pigs, characterized by the development of a pathognomonic proliferative dermatitis and secondary ulcerations. More severe disease with higher levels of morbidity and mortality is observed in congenitally SWPV-infected neonatal piglets. In this study, we investigated the evolutionary origins of SWPV strains isolated from domestic pigs and wild boar. Analysis of whole genome sequences of SWPV showed that at least two different virus strains are currently circulating in Germany. These were more closely related to a previously characterized North American SWPV strain than to a more recent Indian SWPV strain and showed a variation in the SWPV-specific genome region. A single nucleotide deletion in the wild boar (wb) SWPV strain leads to the fusion of the SPV019 and SPV020 open reading frames (ORFs) and encodes a new hypothetical 113 aa protein (SPVwb020-019). In addition, the domestic pig (dp) SWPV genome contained a novel ORF downstream of SPVdp020, which encodes a new hypothetical 71aa protein (SPVdp020a). In summary, we show that SWPV strains with altered coding capacity in the SWPV specific genome region are circulating in domestic pig and wild boar populations in Germany.


Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63.

  • Giulietta Saletti‎ et al.
  • Scientific reports‎
  • 2020‎

Currently, infections with SARS-Coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, are responsible for substantial morbidity and mortality worldwide. Older adults subjects > 60 years of age account for > 95% of the over one million fatal cases reported to date. It is unclear why in this age group SARS-CoV-2 infection causes more severe disease than in young adults. We hypothesized that differences in SARS-CoV-2 cross-reactive cellular immunity induced after infection with human coronaviruses (HCoVs), like OC43 and NL63, were at the basis of the differential mortality (and morbidity) observed after SARS-CoV-2 infection, because a small proportion of HCoV-specific T cells cross-react with SARS-CoV-2. Our data demonstrate that pre-existing T cell immunity induced by circulating human alpha- and beta-HCoVs is present in young adult individuals, but virtually absent in older adult subjects. Consequently, the frequency of cross-reactive T cells directed to the novel pandemic SARS-CoV-2 was minimal in most older adults. To the best of our knowledge, this is the first time that the presence of cross-reactive T cells to SARS-CoV-2 is compared in young and older adults. Our findings provide at least a partial explanation for the more severe clinical outcome of SARS-CoV-2 infection observed in the elderly. Moreover, this information could help to design efficacious vaccines for this age group, aiming at the induction of cell-mediated immunity.


Macrophages and Dendritic Cells Are the Predominant Cells Infected in Measles in Humans.

  • Ingrid V Allen‎ et al.
  • mSphere‎
  • 2018‎

Characterization of human measles cases is essential in order to better assess the data generated in model systems of morbillivirus infection. To this end, we collected formalin-fixed tissue samples from 23 natural measles cases from different areas in the world and different phases of disease ranging from prodromal and acute measles to a persistent infection in an immunocompromised subject. We show that the vast majority of measles virus (MV)-infected cells in epithelia were intraepithelial immune cells that were, in most cases, positive for the CD11c myeloid cell marker. Small numbers of measles virus-infected cytokeratin-positive epithelial cells were also detected in bronchial and appendix epithelia. Dissolution and disruption of uninfected and MV-infected alveolar and bronchial epithelia were prominent features of the measles cases, especially in the established and late phases of the disease. In some instances, this was associated with the formation of MV-infected multinucleated giant cells which expressed CD11c and/or macrophage cell marker 68, a pathological feature also prominently observed in closely associated mucosa-associated lymphoid tissue. Collectively, these data show that resident and inflammatory infiltrating immune cells alter the architecture of respiratory tract epithelia and highlight the necessity for additional research into the function(s) and expression of nectin-4 in human tissues.IMPORTANCE We have brought together a unique collection of 23 human cases of measles infection and studied the types of cells that are infected. This work has not been done with modern technologies such as double labeling with antibodies and confocal microscopy in human cases primarily due to the fact that it is difficult to obtain the material because, fortunately, measles is fatal in only a very small fraction of infected patients. During the past decades, the receptors for measles virus have been elucidated and monkey models have been developed. We found that, in most cases, independently of whether the tissues were obtained early or later in the infection, the primary cell types that were infected were those of the immune system such as lymphocytes, macrophages, and dendritic cells. A very small number of epithelial cells were also found to be infected.


Evolutionary evidence for multi-host transmission of cetacean morbillivirus.

  • Wendy K Jo‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

Cetacean morbillivirus (CeMV) has emerged as the pathogen that poses the greatest risk of triggering epizootics in cetacean populations worldwide, and has a high propensity for interspecies transmission, including sporadic infection of seals. In this study, we investigated the evolutionary history of CeMV by deep sequencing wild-type viruses from tissue samples representing cetacean species with different spatiotemporal origins. Bayesian phylogeographic analysis generated an estimated evolutionary rate of 2.34 × 10-4 nucleotide substitutions/site/year and showed that CeMV evolutionary dynamics are neither host-restricted nor location-restricted. Moreover, the dolphin morbillivirus strain of CeMV has undergone purifying selection without evidence of species-specific mutations. Cell-to-cell fusion and growth kinetics assays demonstrated that CeMV can use both dolphin and seal CD150 as a cellular receptor. Thus, it appears that CeMV can readily spread among multiple cetacean populations and may pose an additional spillover risk to seals.


Highly pathogenic avian influenza A virus (HPAIV) H5N1 infection in two European grey seals (Halichoerus grypus) with encephalitis.

  • Monica Mirolo‎ et al.
  • Emerging microbes & infections‎
  • 2023‎

ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020-2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.


Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection.

  • Rik L de Swart‎ et al.
  • NPJ vaccines‎
  • 2017‎

Needle-free measles virus vaccination by aerosol inhalation has many potential benefits. The current standard route of vaccination is subcutaneous injection, whereas measles virus is an airborne pathogen. However, the target cells that support replication of live-attenuated measles virus vaccines in the respiratory tract are largely unknown. The aims of this study were to assess the in vivo tropism of live-attenuated measles virus and determine whether respiratory measles virus vaccination should target the upper or lower respiratory tract. Four groups of twelve cynomolgus macaques were immunized with 104 TCID50 of recombinant measles virus vaccine strain Edmonston-Zagreb expressing enhanced green fluorescent protein. The vaccine virus was grown in MRC-5 cells and formulated with identical stabilizers and excipients as used in the commercial MVEZ vaccine produced by the Serum Institute of India. Animals were immunized by hypodermic injection, intra-tracheal inoculation, intra-nasal instillation, or aerosol inhalation. In each group six animals were euthanized at early time points post-vaccination, whereas the other six were followed for 14 months to assess immunogenicity and protection from challenge infection with wild-type measles virus. At early time-points, enhanced green fluorescent protein-positive measles virus-infected cells were detected locally in the muscle, nasal tissues, lungs, and draining lymph nodes. Systemic vaccine virus replication and viremia were virtually absent. Infected macrophages, dendritic cells and tissue-resident lymphocytes predominated. Exclusive delivery of vaccine virus to the lower respiratory tract resulted in highest immunogenicity and protection. This study sheds light on the tropism of a live-attenuated measles virus vaccine and identifies the alveolar spaces as the optimal site for respiratory delivery of measles virus vaccine.


The Canine Morbillivirus Strain Associated with An Epizootic in Caspian Seals Provides New Insights into the Evolutionary History of this Virus.

  • Wendy K Jo‎ et al.
  • Viruses‎
  • 2019‎

Canine morbillivirus (canine distemper virus; CDV) is a worldwide distributed morbillivirus that causes sporadic cases and recurrent epizootics among an increasing number of wild, feral, and domestic animal species. We investigated the evolutionary history of CDV strains involved in the 1988 Lake Baikal (CDVPS88) and the 2000 Caspian Sea (CDVPC00) seal die-offs by recovery of full-length sequences from archived material using next-generation sequencing. Bayesian phylogenetic analyses indicated that CDVPC00 constitutes a novel strain in a separate clade (tentatively termed "Caspian") from the America-1 clade, which is comprised of older vaccine strains. The America-1/Caspian monophyletic group is positioned most basally with respect to other clades and is estimated to have separated from other CDV clades around 1832. Our results indicate that CDVPC00 recovered from the epizootic in the Caspian Sea in 2000 belongs to a previously undetected novel clade and constitutes the most ancestral wild-type CDV clade.


Neuropathologic and molecular aspects of a canine distemper epizootic in red foxes in Germany.

  • Franziska Geiselhardt‎ et al.
  • Scientific reports‎
  • 2022‎

In the last fifteen years, an epidemic of canine distemper virus (CDV) with marked neurotropism has occurred in Europe after a longer period of endemic transmission. Many wildlife species have been infected, with red foxes (Vulpes vulpes) being particularly affected. Given that this species is assumed to mediate cross-species CDV infections to domestic and wild animals, tissue samples from foxes with confirmed CDV infection in North-Western Germany were investigated to better understand the neurotropic aspects of the disease. This analysis included histopathology, virus distribution and cell tropism, phenotyping of inflammatory responses and determination of the genotype of the viruses based on the phylogeny of the hemagglutinin (H) gene. The predominant lesion type is gliosis in both gray and white matter areas associated with an accumulation of Iba1+ macrophages/microglia and upregulation of major histocompatibility complex class II molecules in the brain, while sequestration of CD3+ T and Pax5+ B cell in CDV-infected foxes is limited. Demyelination is found in few foxes, characterized by reduced myelin staining with loss of CNPase+ oligodendrocytes in the cerebellar white matter and brainstem. In addition, axonal damage, characterized by β-amyloid precursor protein expression, is found mainly in these brain regions. In situ hybridization reveals a primary infection of the cerebral and cerebellar gray matter and brain stem. Iba1+ cells and NeuN+ neurons represent the main CDV targets. Sequencing of the CDV H open reading frame from fox tissues reveals that the virus strains belongs to three different sub-lineages of the Europe-1/South America-1 genotype, suggesting independent transmission lines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: