Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation.

  • Niall Mortimer‎ et al.
  • Neuropharmacology‎
  • 2019‎

Adhesion G protein-coupled receptor L3 (ADGRL3, LPHN3) has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD). In this study, we examined the characteristics of Adgrl3-deficient mice in multiple behavioural domains related to ADHD: locomotive activity, impulsivity, gait, visuospatial and recognition memory, sociability, anxiety-like behaviour and aggression. Additionally, we investigated the effect of Adgrl3-depletion at the transcriptomic level by RNA-sequencing three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Adgrl3-/- mice show increased locomotive activity across all tests and subtle gait abnormalities. These mice also show impairments across spatial memory and learning domains, alongside increased levels of impulsivity and sociability with decreased aggression. However, these alterations were absent in Adgrl3+/- mice. Across all brain regions tested, the numbers of genes found to exhibit differential expression was relatively small, indicating a specific pathway of action, rather than a broad neurobiological perturbation. Gene-set analysis of differential expression in the PFC detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The Slc6a3 gene coding for the dopamine transporter was the most dysregulated gene in the PFC. Unexpectedly, several neurohormone/peptides which are typically only expressed in the hypothamalus were found to be dysregulated in the striatum. Our study further validates Adgrl3 constitutive knockout mice as an experimental model of ADHD while providing neuroanatomical targets for future studies involving ADGRL3 modified models. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.


Lack of association between the LPR and VNTR polymorphisms of the serotonin transporter gene and cocaine dependence in a Spanish sample.

  • Alba Tristán-Noguero‎ et al.
  • Psychiatry research‎
  • 2013‎

We genotyped the LPR and VNTR polymorphisms of the serotonin transporter gene in 504 cocaine-dependent patients and 508 controls. No association was detected with either polymorphism or with any haplotype combination. This study provided no evidence that these polymorphisms confer susceptibility to cocaine dependence in our sample.


Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors.

  • Niamh Mullins‎ et al.
  • Biological psychiatry‎
  • 2022‎

Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.


Shared genetic background between children and adults with attention deficit/hyperactivity disorder.

  • Paula Rovira‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2020‎

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.


Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

  • Niamh Mullins‎ et al.
  • Nature genetics‎
  • 2021‎

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.


Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs).

  • Cristina Sánchez-Mora‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2013‎

Attention deficit-hyperactivity disorder (ADHD) is a neuropsychiatric disorder characterized by inappropriate and impaired levels of hyperactivity, impulsivity and inattention. Around 75% of adults with ADHD show comorbidity with other psychiatric disorders such as disruptive behavior disorders or substance use disorders (SUDs). Recently, there has been growing interest in studying the role of microRNAs (miRNAs) in the susceptibility to complex disorders. Interestingly, converging evidence suggests that single nucleotide polymorphisms (SNPs) within miRNAs or miRNA target sites may modulate the miRNA-mediated regulation of gene expression through the alteration of the miRNA maturation, structure or expression pattern as well as the silencing mechanisms of target genes. Genetic studies and animal models support the involvement of the serotonin receptor (HTR1B) in ADHD. We evaluated the contribution of one SNP in the miR-96 target site at HTR1B and eight tagSNPs within the genomic region containing this miRNA in 695 adults with ADHD (266 and 396 subjects with and without comorbid SUD, respectively), 403 subjects with SUD without life-time diagnosis of ADHD and 485 sex-matched controls from Spain. Single and multiple marker analyses revealed association between two SNPs located at the 3' region of miR-96 (rs2402959 and rs6965643) and ADHD without SUD. Our results provide preliminary evidence for the contribution of two sequence variants at the miR-183-96-182 cluster to ADHD without comorbid SUD, and emphasize the need to take comorbidities into account in genetic studies to minimize the effect of heterogeneity and to clarify these complex phenotypes.


ADGRL3 (LPHN3) variants predict substance use disorder.

  • Mauricio Arcos-Burgos‎ et al.
  • Translational psychiatry‎
  • 2019‎

Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.


Genome-wide association study identifies 30 loci associated with bipolar disorder.

  • Eli A Stahl‎ et al.
  • Nature genetics‎
  • 2019‎

Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.


Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder.

  • Iris Garcia-Martínez‎ et al.
  • Scientific reports‎
  • 2017‎

Attention Deficit Hyperactivity Disorder (ADHD) is a common childhood-onset neurodevelopmental condition characterized by pervasive impairment of attention, hyperactivity, and/or impulsivity that can persist into adulthood. The aetiology of ADHD is complex and multifactorial and, despite the wealth of evidence for its high heritability, genetic studies have provided modest evidence for the involvement of specific genes and have failed to identify consistent and replicable results. Due to the lack of robust findings, we performed gene-wide and pathway enrichment analyses using pre-existing GWAS data from 607 persistent ADHD subjects and 584 controls, produced by our group. Subsequently, expression profiles of genes surpassing a follow-up threshold of P-value < 1e-03 in the gene-wide analyses were tested in peripheral blood mononucleated cells (PBMCs) of 45 medication-naive adults with ADHD and 39 healthy unrelated controls. We found preliminary evidence for genetic association between RNF122 and ADHD and for its overexpression in adults with ADHD. RNF122 encodes for an E3 ubiquitin ligase involved in the proteasome-mediated processing, trafficking, and degradation of proteins that acts as an essential mediator of the substrate specificity of ubiquitin ligation. Thus, our findings support previous data that place the ubiquitin-proteasome system as a promising candidate for its involvement in the aetiology of ADHD.


Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome.

  • Najim Lahrouchi‎ et al.
  • Circulation‎
  • 2020‎

Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility.


Evaluation of previous substance dependence genome-wide significant findings in a Spanish sample.

  • Laura Pineda-Cirera‎ et al.
  • Drug and alcohol dependence‎
  • 2018‎

Substance dependence is a chronic and relapsing disorder explained by genetic and environmental risk factors. The aim of our study is to replicate previous genome-wide significant (GWS) hits identified in substance dependence in general or in cocaine dependence in particular using an independent sample from Spain.


Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder.

  • Vanesa Richarte‎ et al.
  • Translational psychiatry‎
  • 2021‎

Compelling evidence supports alterations in gut microbial diversity, bacterial composition, and/or relative abundance of several bacterial taxa in attention-deficit/hyperactivity disorder (ADHD). However, findings for ADHD are inconsistent among studies, and specific gut microbiome signatures for the disorder remain unknown. Given that previous studies have mainly focused on the pediatric form of the disorder and involved small sample sizes, we conducted the largest study to date to compare the gastrointestinal microbiome composition in 100 medication-naïve adults with ADHD and 100 sex-matched healthy controls. We found evidence that ADHD subjects have differences in the relative abundance of several microbial taxa. At the family level, our data support a lower relative abundance of Gracilibacteraceae and higher levels of Selenomonadaceae and Veillonellaceae in adults with ADHD. In addition, the ADHD group showed higher levels of Dialister and Megamonas and lower abundance of Anaerotaenia and Gracilibacter at the genus level. All four selected genera explained 15% of the variance of ADHD, and this microbial signature achieved an overall sensitivity of 74% and a specificity of 71% for distinguishing between ADHD patients and healthy controls. We also tested whether the selected genera correlate with age, body mass index (BMI), or scores of the ADHD rating scale but found no evidence of correlation between genera relative abundance and any of the selected traits. These results are in line with recent studies supporting gut microbiome alterations in neurodevelopment disorders, but further studies are needed to elucidate the role of the gut microbiota on the ADHD across the lifespan and its contribution to the persistence of the disorder from childhood to adulthood.


Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing.

  • Jordi Corominas‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.


Mendelian randomization analysis for attention deficit/hyperactivity disorder: studying a broad range of exposures and outcomes.

  • María Soler Artigas‎ et al.
  • International journal of epidemiology‎
  • 2023‎

Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder caused by a combination of genetic and environmental factors and is often thought as an entry point into a negative life trajectory, including risk for comorbid disorders, poor educational achievement or low income. In the present study, we aimed to clarify the causal relationship between ADHD and a comprehensive range of related traits.


Fine-mapping genomic loci refines bipolar disorder risk genes.

  • Maria Koromina‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2024‎

Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 22 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, YWHAE, DPH1, GSDMB, MED24, THRA, EEF1A2, and KCNQ2 in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance and transferability of BD polygenic risk scores across ancestrally diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).


Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder.

  • Erlend J Brevik‎ et al.
  • American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics‎
  • 2016‎

Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P < 5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.


Association of the PLCB1 gene with drug dependence.

  • Judit Cabana-Domínguez‎ et al.
  • Scientific reports‎
  • 2017‎

Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.


Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults.

  • Paula Rovira‎ et al.
  • Translational psychiatry‎
  • 2020‎

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.


Genetic association study of childhood aggression across raters, instruments, and age.

  • Hill F Ip‎ et al.
  • Translational psychiatry‎
  • 2021‎

Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E-06), PCDH7 (P = 2.0E-06), and IPO13 (P = 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range [Formula: see text]: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range [Formula: see text]: 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.


Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD.

  • Cristina Sánchez-Mora‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2013‎

Attention-deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder characterized by inappropriate difficulties to sustain attention, control impulses and modulate activity level. Although ADHD is one of the most prevalent childhood psychiatric disorders, it also persists into adulthood in around 30-50% of the cases. Based on the effect of psychostimulants used in the pharmacological treatment of ADHD, dysfunctions in neuroplasticity mechanisms and synapses have been postulated to be involved in the pathophysiology of ADHD. With this background, we evaluated, both in childhood and adulthood ADHD, the role of several genes involved in the control of neurotransmitter release through synaptic vesicle docking, fusion and recycling processes by means of a population-based association study. We analyzed single nucleotide polymorphisms across 16 genes in a clinical sample of 950 ADHD patients (506 adults and 444 children) and 905 controls. Single and multiple-marker analyses identified several significant associations after correcting for multiple testing with a false discovery rate (FDR) of 15%: (i) the SYT2 gene was strongly associated with both adulthood and childhood ADHD (p=0.001, OR=1.49 (1.18-1.89) and p=0.007, OR=1.37 (1.09-1.72), respectively) and (ii) STX1A was found associated with ADHD only in adults (p=0.0041; OR=1.28 (1.08-1.51)). These data provide preliminary evidence for the involvement of genes that participate in the control of neurotransmitter release in the genetic predisposition to ADHD through a gene-system association study. Further follow-up studies in larger cohorts and deep-sequencing of the associated genomic regions are required to identify sequence variants directly involved in ADHD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: