Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Vitamin D3 suppresses morphological evolution of the cribriform cancerous phenotype.

  • Ravi K Deevi‎ et al.
  • Oncotarget‎
  • 2016‎

Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.


Undifferentiated Sarcomas Develop through Distinct Evolutionary Pathways.

  • Christopher D Steele‎ et al.
  • Cancer cell‎
  • 2019‎

Undifferentiated sarcomas (USARCs) of adults are diverse, rare, and aggressive soft tissue cancers. Recent sequencing efforts have confirmed that USARCs exhibit one of the highest burdens of structural aberrations across human cancer. Here, we sought to unravel the molecular basis of the structural complexity in USARCs by integrating DNA sequencing, ploidy analysis, gene expression, and methylation profiling. We identified whole genome duplication as a prevalent and pernicious force in USARC tumorigenesis. Using mathematical deconvolution strategies to unravel the complex copy-number profiles and mutational timing models we infer distinct evolutionary pathways of these rare cancers. In addition, 15% of tumors exhibited raised mutational burdens that correlated with gene expression signatures of immune infiltration, and good prognosis.


British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma.

  • Matthew Banks‎ et al.
  • Gut‎
  • 2019‎

Gastric adenocarcinoma carries a poor prognosis, in part due to the late stage of diagnosis. Risk factors include Helicobacter pylori infection, family history of gastric cancer-in particular, hereditary diffuse gastric cancer and pernicious anaemia. The stages in the progression to cancer include chronic gastritis, gastric atrophy (GA), gastric intestinal metaplasia (GIM) and dysplasia. The key to early detection of cancer and improved survival is to non-invasively identify those at risk before endoscopy. However, although biomarkers may help in the detection of patients with chronic atrophic gastritis, there is insufficient evidence to support their use for population screening. High-quality endoscopy with full mucosal visualisation is an important part of improving early detection. Image-enhanced endoscopy combined with biopsy sampling for histopathology is the best approach to detect and accurately risk-stratify GA and GIM. Biopsies following the Sydney protocol from the antrum, incisura, lesser and greater curvature allow both diagnostic confirmation and risk stratification for progression to cancer. Ideally biopsies should be directed to areas of GA or GIM visualised by high-quality endoscopy. There is insufficient evidence to support screening in a low-risk population (undergoing routine diagnostic oesophagogastroduodenoscopy) such as the UK, but endoscopic surveillance every 3 years should be offered to patients with extensive GA or GIM. Endoscopic mucosal resection or endoscopic submucosal dissection of visible gastric dysplasia and early cancer has been shown to be efficacious with a high success rate and low rate of recurrence, providing that specific quality criteria are met.


Evolutionary and immune microenvironment dynamics during neoadjuvant treatment of oesophagael adenocarcinoma.

  • Melissa Barroux‎ et al.
  • Research square‎
  • 2023‎

Locally advanced oesophageal adenocarcinoma (EAC) remains difficult to treat because of common resistance to neoadjuvant therapy and high recurrence rates. The ecological and evolutionary dynamics responsible for treatment failure are incompletely understood. Here, we performed a comprehensive multi-omic analysis of samples collected from EAC patients in the MEMORI clinical trial, revealing major changes in gene expression profiles and immune microenvironment composition that did not appear to be driven by changes in clonal composition. Multi-region multi-timepoint whole exome (300x depth) and paired transcriptome sequencing was performed on 27 patients pre-, during and after neoadjuvant treatment. EAC showed major transcriptomic changes during treatment with upregulation of immune and stromal pathways and oncogenic pathways such as KRAS, Hedgehog and WNT. However, genetic data revealed that clonal sweeps were rare, suggesting that gene expression changes were not clonally driven. Additional longitudinal image mass cytometry was performed in a subset of 15 patients and T-cell receptor sequencing in 10 patients, revealing remodelling of the T-cell compartment during treatment and other shifts in microenvironment composition. The presence of immune escape mechanisms and a lack of clonal T-cell expansions were linked to poor clinical treatment response. This study identifies profound transcriptional changes during treatment with limited evidence that clonal replacement is the cause, suggesting phenotypic plasticity and immune dynamics as mechanisms for therapy resistance with pharmacological relevance.


Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells.

  • Biancastella Cereser‎ et al.
  • The Journal of pathology‎
  • 2018‎

It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial stem cell; however, demonstrating the presence and location of tissue stem cells in the human breast has proved difficult. Furthermore, we do not know the clonal architecture of the normal and premalignant mammary epithelium or its cellular hierarchy. Here, we use deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in combination with immunohistochemistry for markers of lineage differentiation was performed to determine the clonal nature of the mammary epithelium. We have shown that in the normal human breast, clonal expansions (defined here by areas of CCO deficiency) are typically uncommon and of limited size, but can occur at any site within the adult mammary epithelium. The presence of a stem cell population was shown by demonstrating multi-lineage differentiation within CCO-deficient areas. Interestingly, we observed infrequent CCO deficiency that was restricted to luminal cells, suggesting that niche succession, and by inference stem cell location, is located within the luminal layer. CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting that the rate of clonal expansion was altered in the premalignant lesion. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Evolutionary history of human colitis-associated colorectal cancer.

  • Ann-Marie Baker‎ et al.
  • Gut‎
  • 2019‎

IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing.


Bcl-2 is a critical mediator of intestinal transformation.

  • Maartje van der Heijden‎ et al.
  • Nature communications‎
  • 2016‎

Intestinal tumour formation is generally thought to occur following mutational events in the stem cell pool. However, active NF-κB signalling additionally facilitates malignant transformation of differentiated cells. We hypothesized that genes shared between NF-κB and intestinal stem cell (ISCs) signatures might identify common pathways that are required for malignant growth. Here, we find that the NF-κB target Bcl-2, an anti-apoptotic gene, is specifically expressed in ISCs in both mice and humans. Bcl-2 is dispensable in homeostasis and, although involved in protecting ISCs from radiation-induced damage, it is non-essential in tissue regeneration. Bcl-2 is upregulated in adenomas, and its loss or inhibition impairs outgrowth of oncogenic clones, because Bcl-2 alleviates apoptotic priming in epithelial cells following Apc loss. Furthermore, Bcl-2 expression in differentiated epithelial cells renders these cells amenable to clonogenic outgrowth. Collectively, our results indicate that Bcl-2 is required for efficient intestinal transformation following Apc-loss and constitutes a potential chemoprevention target.


Phenotypic plasticity and genetic control in colorectal cancer evolution.

  • Jacob Househam‎ et al.
  • Nature‎
  • 2022‎

Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.


Inflammation aggravates disease severity in Marfan syndrome patients.

  • Teodora Radonic‎ et al.
  • PloS one‎
  • 2012‎

Marfan syndrome (MFS) is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-β signaling. However, the contribution of tissue inflammation is not addressed so far.


Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex.

  • Jean Paul ten Klooster‎ et al.
  • Developmental cell‎
  • 2009‎

The human Lkb1 kinase, encoded by the ortholog of the invertebrate Par4 polarity gene, is mutated in Peutz-Jeghers cancer syndrome. Lkb1 activity requires complex formation with the pseudokinase Strad and the adaptor protein Mo25. The complex can induce complete polarization in a single isolated intestinal epithelial cell. We describe an interaction between Mo25alpha and a human serine/threonine kinase termed Mst4. A homologous interaction occurs in the yeast Schizosaccharomyces pombe in the control of polar tip growth. Human Mst4 translocates from the Golgi to the subapical membrane compartment upon activation of Lkb1. Inhibition of Mst4 activity inhibits Lkb1-induced brush border formation, whereas other aspects of polarity such as the formation of lateral junctions remain unaffected. As an essential event in brush border formation, Mst4 phosphorylates the regulatory T567 residue of Ezrin. These data define a brush border induction pathway downstream of the Lkb1/Strad/Mo25 polarization complex, yet separate from other polarity events.


Robust RNA-based in situ mutation detection delineates colorectal cancer subclonal evolution.

  • Ann-Marie Baker‎ et al.
  • Nature communications‎
  • 2017‎

Intra-tumor heterogeneity (ITH) is a major underlying cause of therapy resistance and disease recurrence, and is a read-out of tumor growth. Current genetic ITH analysis methods do not preserve spatial context and may not detect rare subclones. Here, we address these shortfalls by developing and validating BaseScope-a novel mutation-specific RNA in situ hybridization assay. We target common point mutations in the BRAF, KRAS and PIK3CA oncogenes in archival colorectal cancer samples to precisely map the spatial and morphological context of mutant subclones. Computational modeling suggests that subclones must arise sufficiently early, or carry a considerable fitness advantage, to form large or spatially disparate subclones. Examples of putative treatment-resistant cells isolated in small topographical areas are observed. The BaseScope assay represents a significant technical advance for in situ mutation detection that provides new insight into tumor evolution, and could have ramifications for selecting patients for treatment.


The evolutionary landscape of colorectal tumorigenesis.

  • William Cross‎ et al.
  • Nature ecology & evolution‎
  • 2018‎

The evolutionary events that cause colorectal adenomas (benign) to progress to carcinomas (malignant) remain largely undetermined. Using multi-region genome and exome sequencing of 24 benign and malignant colorectal tumours, we investigate the evolutionary fitness landscape occupied by these neoplasms. Unlike carcinomas, advanced adenomas frequently harbour sub-clonal driver mutations-considered to be functionally important in the carcinogenic process-that have not swept to fixation, and have relatively high genetic heterogeneity. Carcinomas are distinguished from adenomas by widespread aneusomies that are usually clonal and often accrue in a 'punctuated' fashion. We conclude that adenomas evolve across an undulating fitness landscape, whereas carcinomas occupy a sharper fitness peak, probably owing to stabilizing selection.


Risk of lymph node metastases in patients with T1b oesophageal adenocarcinoma: A retrospective single centre experience.

  • David Graham‎ et al.
  • World journal of gastroenterology‎
  • 2018‎

To assess clinical outcomes for submucosal (T1b) oesophageal adenocarcinoma (OAC) patients managed with either surgery or endoscopic eradication therapy.


The co-evolution of the genome and epigenome in colorectal cancer.

  • Timon Heide‎ et al.
  • Nature‎
  • 2022‎

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Immunosuppressive niche engineering at the onset of human colorectal cancer.

  • Chandler D Gatenbee‎ et al.
  • Nature communications‎
  • 2022‎

The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells would be the most common driver of transformation. As predicted, ecological analysis reveals that progressed adenomas co-localized with immunosuppressive cells and cytokines, while benign adenomas co-localized with a mixed immune response. Carcinomas converge to a common immune "cold" ecology, relaxing selection against immunogenicity and high neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation. These findings suggest re-engineering the immunosuppressive niche may prove an effective immunotherapy in CRC.


Epigenome and early selection determine the tumour-immune evolutionary trajectory of colorectal cancer.

  • Eszter Lakatos‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.


Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus.

  • Danielle L Lavery‎ et al.
  • Gut‎
  • 2016‎

Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells.


TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype.

  • Evelyn Fessler‎ et al.
  • EMBO molecular medicine‎
  • 2016‎

The heterogeneous nature of colorectal cancer (CRC) complicates prognosis and is suggested to be a determining factor in the efficacy of adjuvant therapy for individual patients. Based on gene expression profiling, CRC is currently classified into four consensus molecular subtypes (CMSs), characterized by specific biological programs, thus suggesting the existence of unifying developmental drivers for each CMS Using human organoid cultures, we investigated the role of such developmental drivers at the premalignant stage of distinct CRC subtypes and found that TGFβ plays an important role in the development of the mesenchymal CMS4, which is of special interest due to its association with dismal prognosis. We show that in tubular adenomas (TAs), which progress to classical CRCs, the dominating response to TGFβ is death by apoptosis. By contrast, induction of a mesenchymal phenotype upon TGFβ treatment prevails in a genetically engineered organoid culture carrying a BRAF(V) (600E) mutation, constituting a model system for sessile serrated adenomas (SSAs). Our data indicate that TGFβ signaling is already active in SSA precursor lesions and that TGFβ is a critical cue for directing SSAs to the mesenchymal, poor-prognosis CMS4 of CRC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: