Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Astrocytes integrate and drive action potential firing in inhibitory subnetworks.

  • Tara Deemyad‎ et al.
  • Nature communications‎
  • 2018‎

Many brain functions depend on the ability of neural networks to temporally integrate transient inputs to produce sustained discharges. This can occur through cell-autonomous mechanisms in individual neurons and through reverberating activity in recurrently connected neural networks. We report a third mechanism involving temporal integration of neural activity by a network of astrocytes. Previously, we showed that some types of interneurons can generate long-lasting trains of action potentials (barrage firing) following repeated depolarizing stimuli. Here we show that calcium signaling in an astrocytic network correlates with barrage firing; that active depolarization of astrocyte networks by chemical or optogenetic stimulation enhances; and that chelating internal calcium, inhibiting release from internal stores, or inhibiting GABA transporters or metabotropic glutamate receptors inhibits barrage firing. Thus, networks of astrocytes influence the spatiotemporal dynamics of neural networks by directly integrating neural activity and driving barrages of action potentials in some populations of inhibitory interneurons.


Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors.

  • Austin R Graves‎ et al.
  • Neuron‎
  • 2012‎

Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information.


Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites.

  • Nace L Golding‎ et al.
  • The Journal of physiology‎
  • 2005‎

We performed simultaneous patch-electrode recordings from the soma and apical dendrite of CA1 pyramidal neurons in hippocampal slices, in order to determine the degree of voltage attenuation along CA1 dendrites. Fifty per cent attenuation of steady-state somatic voltage changes occurred at a distance of 238 microm from the soma in control and 409 microm after blocking the hyperpolarization-activated (H) conductance. The morphology of three neurons was reconstructed and used to generate computer models, which were adjusted to fit the somatic and dendritic voltage responses. These models identify several factors contributing to the voltage attenuation along CA1 dendrites, including high axial cytoplasmic resistivity, low membrane resistivity, and large H conductance. In most cells the resting membrane conductances, including the H conductances, were larger in the dendrites than the soma. Simulations suggest that synaptic potentials attenuate enormously as they propagate from the dendrite to the soma, with greater than 100-fold attenuation for synapses on many small, distal dendrites. A prediction of this powerful EPSP attenuation is that distal synaptic inputs are likely only to be effective in the presence of conductance scaling, dendritic excitability, or both.


Spatially patterned excitatory neuron subtypes and projections of the claustrum.

  • Sarah R Erwin‎ et al.
  • eLife‎
  • 2021‎

The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.


ShuTu: Open-Source Software for Efficient and Accurate Reconstruction of Dendritic Morphology.

  • Dezhe Z Jin‎ et al.
  • Frontiers in neuroinformatics‎
  • 2019‎

Neurons perform computations by integrating inputs from thousands of synapses-mostly in the dendritic tree-to drive action potential firing in the axon. One fruitful approach to studying this process is to record from neurons using patch-clamp electrodes, fill the recorded neurons with a substance that allows subsequent staining, reconstruct the three-dimensional architectures of the dendrites, and use the resulting functional and structural data to develop computer models of dendritic integration. Accurately producing quantitative reconstructions of dendrites is typically a tedious process taking many hours of manual inspection and measurement. Here we present ShuTu, a new software package that facilitates accurate and efficient reconstruction of dendrites imaged using bright-field microscopy. The program operates in two steps: (1) automated identification of dendritic processes, and (2) manual correction of errors in the automated reconstruction. This approach allows neurons with complex dendritic morphologies to be reconstructed rapidly and efficiently, thus facilitating the use of computer models to study dendritic structure-function relationships and the computations performed by single neurons.


Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse infralimbic frontal cortex.

  • Kourtney Graham‎ et al.
  • Cell reports‎
  • 2021‎

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Sharp cell-type-identity changes differentiate the retrosplenial cortex from the neocortex.

  • Kaitlin E Sullivan‎ et al.
  • Cell reports‎
  • 2023‎

The laminae of the neocortex are fundamental processing layers of the mammalian brain. Notably, such laminae are believed to be relatively stereotyped across short spatial scales such that shared laminae between nearby brain regions exhibit similar constituent cells. Here, we consider a potential exception to this rule by studying the retrosplenial cortex (RSC), a brain region known for sharp cytoarchitectonic differences across its granular-dysgranular border. Using a variety of transcriptomics techniques, we identify, spatially map, and interpret the excitatory cell-type landscape of the mouse RSC. In doing so, we uncover that RSC gene expression and cell types change sharply at the granular-dysgranular border. Additionally, supposedly homologous laminae between the RSC and the neocortex are effectively wholly distinct in their cell-type composition. In collection, the RSC exhibits a variety of intrinsic cell-type specializations and embodies an organizational principle wherein cell-type identities can vary sharply within and between brain regions.


The mechanisms of repetitive spike generation in an axonless retinal interneuron.

  • Mark S Cembrowski‎ et al.
  • Cell reports‎
  • 2012‎

Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (<10 mV) and broad time courses (>5 ms). Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern.


Synaptic amplification by dendritic spines enhances input cooperativity.

  • Mark T Harnett‎ et al.
  • Nature‎
  • 2012‎

Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.


A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons.

  • Jin-Yong Park‎ et al.
  • PLoS biology‎
  • 2010‎

Activation of group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) regulates neural activity in a variety of ways. In CA1 pyramidal neurons, activation of group I mGluRs eliminates the post-burst afterhyperpolarization (AHP) and produces an afterdepolarization (ADP) in its place. Here we show that upregulation of Ca(v)2.3 R-type calcium channels is responsible for a component of the ADP lasting several hundred milliseconds. This medium-duration ADP is rapidly and reversibly induced by activation of mGluR5 and requires activation of phospholipase C (PLC) and release of calcium from internal stores. Effects of mGluR activation on subthreshold membrane potential changes are negligible but are large following action potential firing. Furthermore, the medium ADP exhibits a biphasic activity dependence consisting of short-term facilitation and longer-term inhibition. These findings suggest that mGluRs may dramatically alter the firing of CA1 pyramidal neurons via a complex, activity-dependent modulation of Ca(v)2.3 R-type channels that are activated during spiking at physiologically relevant rates and patterns.


Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons.

  • Mark S Cembrowski‎ et al.
  • Neuron‎
  • 2016‎

Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population—hippocampal CA1 pyramidal cells (CA1 PCs)—and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits.


BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images.

  • Hanchuan Peng‎ et al.
  • Neuron‎
  • 2015‎

Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.


Output-mode transitions are controlled by prolonged inactivation of sodium channels in pyramidal neurons of subiculum.

  • Donald C Cooper‎ et al.
  • PLoS biology‎
  • 2005‎

Transitions between different behavioral states, such as sleep or wakefulness, quiescence or attentiveness, occur in part through transitions from action potential bursting to single spiking. Cortical activity, for example, is determined in large part by the spike output mode from the thalamus, which is controlled by the gating of low-voltage-activated calcium channels. In the subiculum--the major output of the hippocampus--transitions occur from bursting in the delta-frequency band to single spiking in the theta-frequency band. We show here that these transitions are influenced strongly by the inactivation kinetics of voltage-gated sodium channels. Prolonged inactivation of sodium channels is responsible for an activity-dependent switch from bursting to single spiking, constituting a novel mechanism through which network dynamics are controlled by ion channel gating.


Functional clustering of dendritic activity during decision-making.

  • Aaron Kerlin‎ et al.
  • eLife‎
  • 2019‎

The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 μm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 μm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large learning capacity in individual neurons.


Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain.

  • Johan Winnubst‎ et al.
  • Cell‎
  • 2019‎

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes.

  • Mark S Cembrowski‎ et al.
  • Cell‎
  • 2018‎

The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.


Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala.

  • Timothy P O'Leary‎ et al.
  • eLife‎
  • 2020‎

The basolateral amygdala complex (BLA), extensively connected with both local amygdalar nuclei as well as long-range circuits, is involved in a diverse array of functional roles. Understanding the mechanisms of such functional diversity will be greatly informed by understanding the cell-type-specific landscape of the BLA. Here, beginning with single-cell RNA sequencing, we identified both discrete and graded continuous gene-expression differences within the mouse BLA. Via in situ hybridization, we next mapped this discrete transcriptomic heterogeneity onto a sharp spatial border between the basal and lateral amygdala nuclei, and identified continuous spatial gene-expression gradients within each of these regions. These discrete and continuous spatial transformations of transcriptomic cell-type identity were recapitulated by local morphology as well as long-range connectivity. Thus, BLA excitatory neurons are a highly heterogenous collection of neurons that spatially covary in molecular, cellular, and circuit properties. This heterogeneity likely drives pronounced spatial variation in BLA computation and function.


Integrating Results across Methodologies Is Essential for Producing Robust Neuronal Taxonomies.

  • Mark S Cembrowski‎ et al.
  • Neuron‎
  • 2017‎

Elucidating the diversity and spatial organization of cell types in the brain is an essential goal of neuroscience, with many emerging technologies helping to advance this endeavor. Using a new in situ hybridization method that can measure the expression of hundreds of genes in a given mouse brain section (amplified seqFISH), Shah et al. (2016) describe a spatial organization of hippocampal cell types that differs from previous reports. In seeking to understand this discrepancy, we find that many of the barcoded genes used by seqFISH to characterize this spatial organization, when cross-validated by other sensitive methodologies, exhibit negligible expression in the hippocampus. Additionally, the results of Shah et al. (2016) do not recapitulate canonical cellular hierarchies and improperly classify major neuronal cell types. We suggest that, when describing the spatial organization of brain regions, cross-validation using multiple techniques should be used to yield robust and informative cellular classification. This Matters Arising paper is in response to Shah et al. (2016), published in Neuron. See also the response by Shah et al. (2017), published in this issue.


Slow integration leads to persistent action potential firing in distal axons of coupled interneurons.

  • Mark E J Sheffield‎ et al.
  • Nature neuroscience‎
  • 2011‎

The conventional view of neurons is that synaptic inputs are integrated on a timescale of milliseconds to seconds in the dendrites, with action potential initiation occurring in the axon initial segment. We found a much slower form of integration that leads to action potential initiation in the distal axon, well beyond the initial segment. In a subset of rodent hippocampal and neocortical interneurons, hundreds of spikes, evoked over minutes, resulted in persistent firing that lasted for a similar duration. Although axonal action potential firing was required to trigger persistent firing, somatic depolarization was not. In paired recordings, persistent firing was not restricted to the stimulated neuron; it could also be produced in the unstimulated cell. Thus, these interneurons can slowly integrate spiking, share the output across a coupled network of axons and respond with persistent firing even in the absence of input to the soma or dendrites.


Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons.

  • Ching-Lung Hsu‎ et al.
  • Neuron‎
  • 2018‎

The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal's position ("place cells") and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential. The biophysical mechanisms underlying this nonlinear cellular computation are unknown. Here, through a combination of in vitro, in vivo, and in silico approaches, we show that persistent sodium current mediates the strong membrane potential dependence of place cell activity. This current operates at membrane potentials below the action potential threshold and over seconds-long timescales, mediating a powerful and rapidly reversible amplification of synaptic responses, which drives place cell firing. Thus, we identify a biophysical mechanism that shapes the coding properties of neurons composing the hippocampal cognitive map.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: