Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival.

  • Fiona C Mansergh‎ et al.
  • Experimental eye research‎
  • 2010‎

Retinal degeneration (RD) results from photoreceptor apoptosis. Cell transplantation, one potential therapeutic approach, requires expandable stem cells that can form mature photoreceptors when differentiated. Freshly dissociated primary retinal cells from postnatal day 2-6 (PN2-6) mouse retina can give rise, post-transplantation, to photoreceptors in adult recipients. Unfortunately, incorporation rates are low; moreover, photoreceptor potential is lost if the same PN2-6 cells are cultured prior to transplantation. We investigated the identity of the cells forming photoreceptors post-transplantation, using FACS sorted primary postnatal day (PN) 3-5 Rho-eGFP retinal cells. Higher integration rates were achieved for cells that were expressing Rho-eGFP at PN3-5, indicating that post-mitotic photoreceptor precursors already expressing rhodopsin form the majority of integrating rods. We then investigated improvement of cell culture protocols for retinal progenitor cells (RPCs) derived from PN3-5 retinal cells in vitro. We succeeded in improving RPC survival and growth rates 25-fold, by modifying retinal dissociation, replacing N2 supplement with B27 supplement minus retinoic acid (B27-RA) and coating flasks with fibronectin. However, levels of rhodopsin and similar photoreceptor-specific markers still diminished rapidly during growth in vitro, and did not re-appear after in vitro differentiation. Similarly, transplanted RPCs, whether proliferating or differentiated, did not form photoreceptors in vivo. Cultured RPCs upregulate genes such as Sox2 and nestin, markers of more primitive neural stem cells. Use of these cells for RD treatment will require identification of triggers that favour terminal photoreceptor differentiation and survival in vitro prior to transplantation.


Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice.

  • Udo Bartsch‎ et al.
  • Experimental eye research‎
  • 2008‎

Vision impairment caused by degeneration of photoreceptors, termed retinitis pigmentosa, is a debilitating condition with no cure presently available. Cell-based therapeutic approaches represent one treatment option by replacing degenerating or lost photoreceptors. In this study the potential of transplanted primary retinal cells isolated from neonatal mice to integrate into the outer nuclear layer (ONL) of adult mice and to differentiate into mature photoreceptors was evaluated. Retinal cells were isolated from retinas of transgenic mice ubiquitously expressing enhanced green fluorescence protein (EGFP) at either postnatal day (P) 0, P1 or P4 and transplanted into the subretinal space of adult wild-type mice. One week to 11 months post-transplantation experimental retinas were analyzed for integration and differentiation of donor cells. Subsequent to transplantation some postnatal retinal cells integrated into the ONL of the host and differentiated into mature photoreceptors containing inner and outer segments as confirmed by immunohistochemistry and electron microscopy. Notably, the appearance of EGFP-positive photoreceptors was not the result of fusion between donor cells and endogenous photoreceptors. Retinal cells isolated at P4 showed a significant increase in their capacity to integrate into the ONL and to differentiate into mature photoreceptors when compared with cells isolated at P0 or P1. As cell suspensions isolated at P4 are enriched in cells committed towards a rod photoreceptor cell fate it is tempting to speculate that immature photoreceptors may have the highest integration and differentiation potential and thus may present a promising cell type to develop cell replacement strategies for diseases involving rod photoreceptor loss.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: