Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors.

  • Elvir Becirovic‎ et al.
  • PLoS genetics‎
  • 2016‎

Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization.


In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

  • Magdalena Czekaj‎ et al.
  • PloS one‎
  • 2012‎

Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.


Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia.

  • Manja Wobus‎ et al.
  • Oncotarget‎
  • 2015‎

Internal tandem duplications within the juxtamembrane region of the FMS-like tyrosine kinase receptor FLT3 (FLT3-ITD) represents one of the most common mutations in patients with acute myeloid leukemia (AML) which results in constitutive aberrant activation, increased proliferation of leukemic progenitors and is associated with an aggressive clinical phenotype. The expression of CD97, an EGF-TM7 receptor, has been linked to invasive behavior in thyroid and colorectal cancer. Here, we have investigated the association of CD97 with FLT3-ITD and its functional consequences in AML.Higher CD97 expression levels have been detected in 208 out of 385 primary AML samples. This was accompanied by a significantly increased bone marrow blast count as well as by mutations in the FLT3 gene. FLT3-ITD expressing cell lines as MV4-11 and MOLM-13 revealed significantly higher CD97 levels than FLT3 wildtype EOL-1, OCI-AML3 and HL-60 cells which were clearly decreased by the tyrosine kinase inhibitors PKC412 and SU5614. CD97 knock down by short hairpin RNA in MV4-11 cells resulted in inhibited trans-well migration towards fetal calf serum (FCS) and lysophosphatidic acid (LPA) being at least in part Rho-A dependent. Moreover, knock down of CD97 led to an altered mechanical phenotype, reduced adhesion to a stromal layer and lower wildtype FLT3 expression.Our results, thus, constitute the first evidence for the functional relevance of CD97 expression in FLT3-ITD AML cells rendering it a potential new theragnostic target.


CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.

  • Joseph Collin‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2019‎

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Outer segment formation of transplanted photoreceptor precursor cells.

  • Dominic Eberle‎ et al.
  • PloS one‎
  • 2012‎

Transplantation of photoreceptor precursor cells (PPCs) into the retina represents a promising treatment for cell replacement in blinding diseases characterized by photoreceptor loss. In preclinical studies, we and others demonstrated that grafted PPCs integrate into the host outer nuclear layer (ONL) and develop into mature photoreceptors. However, a key feature of light detecting photoreceptors, the outer segment (OS) with natively aligned disc membrane staples, has not been studied in detail following transplantation. Therefore, we used as donor cells PPCs isolated from neonatal double transgenic reporter mice in which OSs are selectively labeled by green fluorescent protein while cell bodies are highlighted by red fluorescent protein. PPCs were enriched using CD73-based magnetic associated cell sorting and subsequently transplanted into either adult wild-type or a model of autosomal-dominant retinal degeneration mice. Three weeks post-transplantation, donor photoreceptors were identified based on fluorescent-reporter expression and OS formation was monitored at light and electron microscopy levels. Donor cells that properly integrated into the host wild-type retina developed OSs with the formation of a connecting cilium and well-aligned disc membrane staples similar to the surrounding native cells of the host. Surprisingly, the majority of not-integrated PPCs that remained in the sub-retinal space also generated native-like OSs in wild-type mice and those affected by retinal degeneration. Moreover, they showed an improved photoreceptor maturation and OS formation by comparison to donor cells located on the vitreous side suggesting that environmental cues influence the PPC differentiation and maturation. We conclude that transplanted PPCs, whether integrated or not into the host ONL, are able to generate the cellular structure for effective light detection, a phenomenon observed in wild-type as well as in degenerated retinas. Given that patients suffering from retinitis pigmentosa lose almost all photoreceptors, our findings are of utmost importance for the development of cell-based therapies.


Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival.

  • Fiona C Mansergh‎ et al.
  • Experimental eye research‎
  • 2010‎

Retinal degeneration (RD) results from photoreceptor apoptosis. Cell transplantation, one potential therapeutic approach, requires expandable stem cells that can form mature photoreceptors when differentiated. Freshly dissociated primary retinal cells from postnatal day 2-6 (PN2-6) mouse retina can give rise, post-transplantation, to photoreceptors in adult recipients. Unfortunately, incorporation rates are low; moreover, photoreceptor potential is lost if the same PN2-6 cells are cultured prior to transplantation. We investigated the identity of the cells forming photoreceptors post-transplantation, using FACS sorted primary postnatal day (PN) 3-5 Rho-eGFP retinal cells. Higher integration rates were achieved for cells that were expressing Rho-eGFP at PN3-5, indicating that post-mitotic photoreceptor precursors already expressing rhodopsin form the majority of integrating rods. We then investigated improvement of cell culture protocols for retinal progenitor cells (RPCs) derived from PN3-5 retinal cells in vitro. We succeeded in improving RPC survival and growth rates 25-fold, by modifying retinal dissociation, replacing N2 supplement with B27 supplement minus retinoic acid (B27-RA) and coating flasks with fibronectin. However, levels of rhodopsin and similar photoreceptor-specific markers still diminished rapidly during growth in vitro, and did not re-appear after in vitro differentiation. Similarly, transplanted RPCs, whether proliferating or differentiated, did not form photoreceptors in vivo. Cultured RPCs upregulate genes such as Sox2 and nestin, markers of more primitive neural stem cells. Use of these cells for RD treatment will require identification of triggers that favour terminal photoreceptor differentiation and survival in vitro prior to transplantation.


RNA interference-mediated suppression and replacement of human rhodopsin in vivo.

  • Mary O'Reilly‎ et al.
  • American journal of human genetics‎
  • 2007‎

Mutational heterogeneity represents a significant barrier to development of therapies for many dominantly inherited diseases. For example, >100 mutations in the rhodopsin gene (RHO) have been identified in patients with retinitis pigmentosa (RP). The development of therapies for dominant disorders that correct the primary genetic lesion and overcome mutational heterogeneity is challenging. Hence, therapeutics comprising two elements--gene suppression in conjunction with gene replacement--have been investigated. Suppression is targeted to a site independent of the mutation; therefore, both mutant and wild-type alleles are suppressed. In parallel with suppression, a codon-modified replacement gene refractory to suppression is provided. Both in vitro and in vivo validation of suppression and replacement for RHO-linked RP has been undertaken in the current study. RNA interference (RNAi) has been used to achieve ~90% in vivo suppression of RHO in photoreceptors, with use of adeno-associated virus (AAV) for delivery. Demonstration that codon-modifed RHO genes express functional wild-type protein has been explored transgenically, together with in vivo expression of AAV-delivered RHO-replacement genes in the presence of targeting RNAi molecules. Observation of potential therapeutic benefit from AAV-delivered suppression and replacement therapies has been obtained in Pro23His mice. Results provide the first in vivo indication that suppression and replacement can provide a therapeutic solution for dominantly inherited disorders such as RHO-linked RP and can be employed to circumvent mutational heterogeneity.


Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.

  • Nicole Toepfner‎ et al.
  • eLife‎
  • 2018‎

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.


Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration.

  • Nora Heinig‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues.

  • Maik Herbig‎ et al.
  • Scientific reports‎
  • 2022‎

Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells' properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.


Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors.

  • Bob Fregin‎ et al.
  • Biomicrofluidics‎
  • 2022‎

The capability to parameterize shapes is of essential importance in biomechanics to identify cells, to track their motion, and to quantify deformation. While various shape descriptors have already been investigated to study the morphology and migration of adherent cells, little is known of how the mathematical definition of a contour impacts the outcome of rheological experiments on cells in suspension. In microfluidic systems, hydrodynamic stress distributions induce time-dependent cell deformation that needs to be quantified to determine viscoelastic properties. Here, we compared nine different shape descriptors to characterize the deformation of suspended cells in an extensional as well as shear flow using dynamic real-time deformability cytometry. While stress relaxation depends on the amplitude and duration of stress, our results demonstrate that steady-state deformation can be predicted from single cell traces even for translocation times shorter than their characteristic time. Implementing an analytical simulation, performing experiments, and testing various data analysis strategies, we compared single cell and ensemble studies to address the question of computational costs vs experimental accuracy. Results indicate that high-throughput viscoelastic measurements of cells in suspension can be performed on an ensemble scale as long as the characteristic time matches the dimensions of the microfluidic system. Finally, we introduced a score to evaluate the shape descriptor-dependent effect size for cell deformation after cytoskeletal modifications. We provide evidence that single cell analysis in an extensional flow provides the highest sensitivity independent of shape parametrization, while inverse Haralick's circularity is mostly applicable to study cells in shear flow.


Coactosin-like 1 integrates signaling critical for shear-dependent thrombus formation in mouse platelets.

  • Inga Scheller‎ et al.
  • Haematologica‎
  • 2020‎

Platelet aggregate formation is a multistep process involving receptor-mediated, as well as biomechanical, signaling cascades, which are highly dependent on actin dynamics. We have previously shown that actin depolymerizing factor (ADF)/n-cofilin and Twinfilin 2a, members of the ADF homology (ADF-H) protein family, have distinct roles in platelet formation and function. Coactosin-like 1 (Cotl1) is another ADF-H protein that binds actin and was also shown to enhance biosynthesis of pro-inflammatory leukotrienes (LT) in granulocytes. Here, we generated mice lacking Cotl1 in the megakaryocyte lineage (Cotl1-/- ) to investigate its role in platelet production and function. Absence of Cotl1 had no impact on platelet counts, platelet activation or cytoskeletal reorganization under static conditions in vitro In contrast, Cotl1 deficiency markedly affected platelet aggregate formation on collagen and adhesion to immobilized von Willebrand factor at high shear rates in vitro, pointing to an impaired function of the platelet mechanoreceptor glycoprotein (GP) Ib. Furthermore, Cotl1 -/-platelets exhibited increased deformability at high shear rates, indicating that the GPIb defect may be linked to altered biomechanical properties of the deficient cells. In addition, we found that Cotl1 deficiency markedly affected platelet LT biosynthesis. Strikingly, exogenous LT addition restored defective aggregate formation of Cotl1-/- platelets at high shear in vitro, indicating a critical role of platelet-derived LT in thrombus formation. In vivo, Cotl1 deficiency translated into prolonged tail bleeding times and protection from occlusive arterial thrombus formation. Together, our results show that Cotl1 in platelets is an integrator of biomechanical and LT signaling in hemostasis and thrombosis.


A Human Retinal Pigment Epithelium-Based Screening Platform Reveals Inducers of Photoreceptor Outer Segments Phagocytosis.

  • Sven Schreiter‎ et al.
  • Stem cell reports‎
  • 2020‎

Phagocytosis is a key function in various cells throughout the body. A deficiency in photoreceptor outer segment (POS) phagocytosis by the retinal pigment epithelium (RPE) causes vision loss in inherited retinal diseases and possibly age-related macular degeneration. To date, there are no effective therapies available aiming at recovering the lost phagocytosis function. Here, we developed a high-throughput screening assay based on RPE derived from human embryonic stem cells (hRPE) to reveal enhancers of POS phagocytosis. One of the hits, ramoplanin (RM), reproducibly enhanced POS phagocytosis and ensheathment in hRPE, and enhanced the expression of proteins known to regulate membrane dynamics and ensheathment in other cell systems. Additionally, RM rescued POS internalization defect in Mer receptor tyrosine kinase (MERTK) mutant hRPE, derived from retinitis pigmentosa patient induced pluripotent stem cells. Our platform, including a primary phenotypic screening phagocytosis assay together with orthogonal assays, establishes a basis for RPE-based therapy discovery aiming at a broad patient spectrum.


Crocetin Prevents RPE Cells from Oxidative Stress through Protection of Cellular Metabolic Function and Activation of ERK1/2.

  • Padideh Karimi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Age-related macular degeneration (AMD) is a leading cause for visual impairment in aging populations with limited established therapeutic interventions available. Oxidative stress plays an essential role in the pathogenesis of AMD, damaging the retinal pigment epithelium (RPE), which is essential for the function and maintenance of the light-sensing photoreceptors. This study aimed to evaluate the effects of crocetin, one of the main components of Saffron, on an in vitro RPE model of tert-butyl hydroperoxide (TBHP) induced oxidative stress using ARPE19 cells. The effects of crocetin were assessed using lactate de-hydrogenase (LDH) and ATP assays, as well as immunocytochemistry for cell morphology, junctional integrity, and nuclear morphology. The mechanism of crocetin action was determined via assessment of energy production pathways, including mitochondrial respiration and glycolysis in real-time as well as investigation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and distribution. Our results show that crocetin pre-treatment protects ARPE19 cells from TBHP-induced LDH release, intracellular ATP depletion, nuclear condensation, and disturbance of junctional integrity and cytoskeleton. The protective effect of crocetin is mediated via the preservation of energy production pathways and activation of ERK1/2 in the first minutes of TBHP exposure to potentiate survival pathways. The combined data suggest that a natural antioxidant, such as crocetin, represents a promising candidate to prevent oxidative stress in RPE cells and might halt or delay disease progression in AMD.


Analysis of cell surface markers specific for transplantable rod photoreceptors.

  • Kai Postel‎ et al.
  • Molecular vision‎
  • 2013‎

Transplantation of cells into retinas affected by degenerative diseases to replace dying photoreceptors represents a promising therapeutic approach. Young photoreceptors of 4-day-old mice show the highest capacity to integrate into the retinas of adult mice following grafting. Additional enrichment of these donor cells before transplantation with cell surface marker-dependent sorting methods further increases success rates. Currently, defined cell surface markers specific for transplantable photoreceptors that can be used for enrichment are limited. Therefore, identifying alternative targets would be advantageous.


A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy.

  • Matthias Christoph Munder‎ et al.
  • eLife‎
  • 2016‎

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.


Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells.

  • Sandra Tavares‎ et al.
  • Nature communications‎
  • 2017‎

Studies of the role of actin in tumour progression have highlighted its key contribution in cell softening associated with cell invasion. Here, using a human breast cell line with conditional Src induction, we demonstrate that cells undergo a stiffening state prior to acquiring malignant features. This state is characterized by the transient accumulation of stress fibres and upregulation of Ena/VASP-like (EVL). EVL, in turn, organizes stress fibres leading to transient cell stiffening, ERK-dependent cell proliferation, as well as enhancement of Src activation and progression towards a fully transformed state. Accordingly, EVL accumulates predominantly in premalignant breast lesions and is required for Src-induced epithelial overgrowth in Drosophila. While cell softening allows for cancer cell invasion, our work reveals that stress fibre-mediated cell stiffening could drive tumour growth during premalignant stages. A careful consideration of the mechanical properties of tumour cells could therefore offer new avenues of exploration when designing cancer-targeting therapies.


Rebuilding the Missing Part-A Review on Photoreceptor Transplantation.

  • Tiago F Santos-Ferreira‎ et al.
  • Frontiers in systems neuroscience‎
  • 2016‎

Vision represents one of the main senses for humans to interact with their environment. Our sight relies on the presence of fully functional light sensitive cells - rod and cone photoreceptors - allowing us to see under dim (rods) and bright (cones) light conditions. Photoreceptor degeneration is one of the major causes for vision impairment in industrialized countries and it is highly predominant in the population above the age of 50. Thus, with the continuous increase in life expectancy it will make retinal degeneration reach an epidemic proportion. To date, there is no cure established for photoreceptor loss, but several therapeutic approaches, spanning from neuroprotection, pharmacological drugs, gene therapy, retinal prosthesis, and cell (RPE or photoreceptor) transplantation, have been developed over the last decade with some already introduced in clinical trials. In this review, we focus on current developments in photoreceptor transplantation strategies, its major breakthroughs, current limitations and the next challenges to translate such cell-based approaches toward clinical application.


Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange.

  • Tiago Santos-Ferreira‎ et al.
  • Nature communications‎
  • 2016‎

Pre-clinical studies provided evidence for successful photoreceptor cell replacement therapy. Migration and integration of donor photoreceptors into the retina has been proposed as the underlying mechanism for restored visual function. Here we reveal that donor photoreceptors do not structurally integrate into the retinal tissue but instead reside between the photoreceptor layer and the retinal pigment epithelium, the so-called sub-retinal space, and exchange intracellular material with host photoreceptors. By combining single-cell analysis, Cre/lox technology and independent labelling of the cytoplasm and nucleus, we reliably track allogeneic transplants demonstrating cellular content transfer between graft and host photoreceptors without nuclear translocation. Our results contradict the common view that transplanted photoreceptors migrate and integrate into the photoreceptor layer of recipients and therefore imply a re-interpretation of previous photoreceptor transplantation studies. Furthermore, the observed interaction of donor with host photoreceptors may represent an unexpected mechanism for the treatment of blinding diseases in future cell therapy approaches.


Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration.

  • Ewa Guzniczak‎ et al.
  • Biotechnology and bioengineering‎
  • 2020‎

Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: